GEOCHEMICAL CHARACTERIZATION OF BACKGROUND SURFACE SOILS: BACKGROUND SOILS CHARACTERIZATION PROGRAM

Rocky Flats Environmental Technology Site

U.S. DEPARTMENT OF ENERGY Rocky Flats Environmental Technology Site Golden, Colorado

May 1995

EG&G Rocky Flats, Inc. Golden, Colorado

GEOCHEMICAL CHARACTERIZATION OF BACKGROUND SURFACE SOILS: BACKGROUND SOILS CHARACTERIZATION PROGRAM

Final Report May 1995

Prepared for:
U.S. Department of Energy
Rocky Flats Environmental Technology Site
Golden, Colorado 80401

TABLE OF CONTENTS

TABLE OF C	ONTENTS
LIST OF TAB	LESiii
LIST OF FIGU	JRES v
ACRONYMS	AND ABBREVIATIONS
EXECUTIVE	SUMMARY
1.0 INTRODU	ICTION
1.2 1.3 1.4	SCOPE
2.0 METHOD	S 2-1
2.2	STUDY DESIGN
2.3	Organic Compounds, and Other Supporting Parameters 2-2 2.2.2 Group 2 Analytes: Plutonium and Other Fallout Radionuclides 2-3 SAMPLE COLLECTION, HANDLING, AND DATA MANAGEMENT . 2-5 2.3.1 Sample Collection
	2.3.3.1 Field Data Management 2-6 2.3.3.2 Analytical Data Management 2-6 LABORATORY ANALYTICAL METHODS 2-6 2.4.1 Group 1 Analytes 2-7 2.4.2 Supporting Data From Group 1 Sampling 2-7 2.4.3 Group 2 Analytes 2-7 2.4.4 Supporting Data From Group 2 Sampling 2-8
2.5	STATISTICAL METHODS

3.0	BSCF	P DATA: STATISTICAL SUMMARY OF ANALYTICAL RESULTS 3-1
	3.1	BSCP DATA: SUMMARY STATISTICS FOR
		GROUP 1 ANALYTES
	3.2	COMPARISONS OF BSCP GROUP 1 ANALYTES
	3.3	BY SOIL TYPE
	3.3	GROUP 2 ANALYTES
	3.4	GROUP 2 SAMPLES: PLUTONIUM ISOTOPE RATIOS
4.0	DISC	USSION OF ANALYTICAL RESULTS FOR BSCP AND ROCK
		EK SAMPLES
	4.1	GROUP 1 ANALYTES: METALS
	4.2	GROUP 1 ANALYTES: NATURALLY OCCURRING
		RADIONUCLIDES 4-19
	4.3	GROUP 1 ANALYTES: SUPPORTING PARAMETERS 4-23
	4.4	GROUP 2 ANALYTES: FALLOUT RADIONUCLIDES 4-24
	4.5	CONCLUSIONS: BSCP AND ROCK CREEK DATA SETS 4-28
5.0	BIBL	IOGRAPHY
APPE	NDIX	A - MEASUREMENT OF ²⁴⁰ Pu/ ²³⁹ Pu and ²⁴¹ Pu/ ²³⁹ Pu ATOM RATIOS IN SOIL
		SAMPLES REPRESENTATIVE OF GLOBAL FALLOUT
		IN COLORADO
APPE	NDIX	B - RAW DATA B-1
APPE	NDIX	C - DATA QUALITY ASSESSMENT
	C .1	DATA VALIDATION
	C.2	
	C.3	PRECISION, ACCURACY, REPRESENTATIVENESS,
		COMPLETENESS, AND COMPARABILITY PARAMETERS C-2
		C.3.1 Precision
		C.3.2 Accuracy
		C.3.3 Representativeness
		C.3.4 Completeness
		C.3.5 Comparability
	C.4	EQUIPMENT DECONTAMINATION
	C.5	LABORATORY CONTAMINATION IN SAMPLES
APPE	NDIX	D - BOX-AND-WHISKER PLOTS

LIST OF TABLES

Table 1-1	Soil Taxonomic Table
Table 2-1	List of Group 1 Analytes: Metals, Naturally Occurring Radionuclides, and Supporting Parameters
Table 2-2	List of Group 1 Analytes: Selected Organic Compounds 2-14
Table 2-3	List of Group 2 Analytes: Fallout Radionuclides 2-15
Table 2-4	Site Locations for BSCP Group 1 Analytes
Table 2-5	Site Locations for BSCP Group 2 Analytes
Table 2-6	Sample Containers and Holding Times for Soil Samples 2-19
Table 3-1	Summary Statistics for BSCP Group 1 Analytes: Metals and Naturally Occurring Radionuclides
Table 3-2	Summary Statistics for BSCP Group 1 Analytes: Supporting Data Types
Table 3-3	BSCP Semivolatile Organic Compounds: Estimated Values vs. Associated Laboratory Blank
Table 3-4	Group 1 Analytes: Nonparametric ANOVA by Soil Type 3-10
Table 3-5	Summary Statistics for BSCP Group 2 Analytes: Fallout Radionuclides and Supporting Data
Table 3-6	²⁴⁰ Pu/ ²³⁹ Pu and ²⁴¹ Pu/ ²³⁹ Pu Isotope Ratios
Table 4-1	Summary Statistics for Rock Creek Group 1 Analytes: Metals and Naturally Occurring Radionuclides
Table 4-2	Summary Statistics for Rock Creek: Supporting Data Types 4-32
Table 4-3	Group 1 Analytes with Greater Than 80% Detection Frequency in BSCP or Rock Creek Data Sets
Table 4-4	Rock Creek vs BSCP Data for Group 1 Analytes: Results of Statistical Tests

Table 4-5	Summary Statistics for Rock Creek, Group 2 Analytes: Fallout Radionuclides
Table 4-6	Rock Creek vs BSCP Data for Group 2 Analytes: Results of Statistical Tests
Table 4-7	Regional ^{239/240} Pu Concentrations in Surface Soils 4-38
Table 4-8	Correlation Coefficients for BSCP Metals
Table 4-9	Summary Statistics for the Simply Combined BSCP and Rock Creek Data Sets for Group 1 Analytes: Metals and Naturally Occurring Radionuclides
Table 4-10	Summary Statistics for the Simply Combined BSCP and Rock Creek Data Sets: Supporting Data Types
Table C-1	Matrix Type and Analytical Suites
Table C-2	Calculated RPD Values for Field Duplicate Samples C-7
Table C-3	Summary of RPDs
Table C-4	Analytical Methods and Detection Limits for BSCP Soil and Soil Profile Samples
Table C-5	Sample Comparison (Required-vs-Actual)

LIST OF FIGURES

Figure 1-1	General Location of Rocky Flats Environmental Technology Site	1-13
Figure 1-2	Rocky Flats Environmental Technology Site Buffer Zone and Drainages	1-14
Figure 1-3	Generalized East-West Cross-Section Front Range to Denver Basin	1-15
Figure 1-4a	Geologic Map of Rocky Flats Environmental Technology Site and Vicinity - Jefferson and Boulder Counties, Colorado	1-17
Figure 1-4b	Legend for Geologic Map of Rocky Flats Environmental Technology Site and Vicinity - Jefferson and Boulder Counties,	1-19
Figure 1-5	Erosional Surfaces and Alluvial Deposits East of the Colorado Front Range	1-21
Figure 1-6	Wind Rose for the Rocky Flats Environmental Technology Site	1-22
Figure 1-7	Rocky Flats Environmental Technology Site Soil Map Units	1-23
Figure 1-8	Soil Taxonomic Great Groups	1-25
Figure 2-1	Comparison of Pu-239+240 from CDPHE and RF Sampling Methods from OU3 Data Set	2-23
Figure 2-2	Site Locations for Group 1 Samples	2-25
Figure 2-3	Site Locations for Group 2 Samples	2-27
Figure 2-4	Rocky Flats Method for Soil Sampling: Location and Spacing	2-29
Figures 4-1	Analyte Comparisons	4-45

V

ACRONYMS AND ABBREVIATIONS

AAS atomic absorption spectroscopy

ANOVA analysis of variance

Applicable or Relevant and Appropriate Requirements **ARARs**

ASTM American Society for Testing and Materials

Bequerels per kilogram Bq/kg

BSCP Background Soils Characterization Program

Colorado Department of Public Health and Environment **CDPHE**

Comprehensive Environmental Response, Compensation and Liability Act CERCLA

Ci curie

CLP Contract Laboratory Program

centimeters cm

COC Chain of Custody

CRDL contract required detection limits

DOE U.S. Department of Energy

Data Quality Objectives DOO **EDA** exploratory data analysis

EPA U.S. Environmental Protection Agency

ER **Environmental Restoration**

٥F degrees Fahrenheit

Geographic Information System GIS

GPS Global Positioning System

General Radiochemistry and Routine Analytical Services Protocol **GRRASP**

hectares ha

HF hydrofluoric acid

IAG Interagency Agreement

ICP inductively coupled plasma emission spectroscopy

instrument detection limit IDL

inches in

km kilometers

LANL Los Alamos National Laboratory

m meters

m/s meters per second

MDA minimum detection activity

MDL method detection limit

mi miles

mph miles per hour

NPL National Priorities List

NTS Nevada Test Site

OES optical emission spectroscopy

OU Operable Unit

PARCC precision, accuracy, representativeness, completeness, and

comparability

PCB polychlorinated biphenyls

PPRG programmatic preliminary remediation goal

pCi/g picoCuries per gram

QA Quality Assurance

QAPiP Quality Assurance Project Plan

QC Quality Control

RCRA Resource Conservation and Recovery Act

RF Rocky Flats

RFEDS Rocky Flats Environmental Database System

RFETS Rocky Flats Environmental Technology Site

RFI RCRA Facility Investigation

RFP Rocky Flats Plant

RI Remedial Investigation

RPD Relative Percent Differences

SCS Soil Conservation Service

SVOC semivolatile organic compound

TAL Total Analyte List

TCL Target Compound List

TIMS Thermal Ionization Mass Spectrometry

TOC Total Organic Carbon

UHSU upper hydrostratigraphic unit

USDA United States Department of Agriculture

UTL upper tolerance limit

XRF x-ray fluorescence

EXECUTIVE SUMMARY

TABLES

TABLE E-1

SUMMARY STATISTICS FOR BSCP GROUP 1 ANALYTES: METALS AND NATURALLY OCCURRING RADIONUCLIDES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standar d Deviatio n	Tol Fact	99/99 UTL*	Units
Aluminum	Normal	20	0	4050	17100	10244	3329	3.8316	22999	mg/kg
Antimony	X	20	96	.19U	0.47	X	х	3.8316	х	mg/kg
Arsenic	Normal	20	0	2.3	9.6	6.09	2	3.8316	13.75	mg/kg
Barium	Normal	20	0	45.7	134	102.4	19.43	3.8316	176	mg/kg
Beryllium	Normal	20	0	0.24	0.9	0.66	0.153	3.8316	1.25	mg/kg
Cadmium	Nonparam	20	39	.295U	2.3	0.714	0.449	3.8316	2.335	mg/kg
Calcium	Normal	20	0	1450	4550	2969	749	3.8316	5839	mg/kg
Cesium	х	20	100	6.05U	7 U	х	х	3.8316	Х	mg/kg
Chromium	Normal	20	0	5.5	16.9	11.29	2.85	3.8316	22.21	mg/kg
Cobalt	Normal	20	0	3.4	11.2	7.29	1.81	3.8316	14.22	mg/kg
Copper	Nonparam	20	0	5.2	15.85	12.94	2.56	3.8316	22.75	mg/kg
Iron	Normal	20	0	7390	18100	12549	2744	3.8316	23063	mg/kg
Lead	Normal	20	0	8.6	53.3	33.6	10.51	3.8316	73.87	mg/kg
Lithium	Lognormal	20	0	4.8	11.6	7.69	1.93	3.8316	15.08	mg/kg
Magnesium	Lognormal	20	0	1310	2800	1913.1	468.1	3.8316	3707	mg/kg
Manganese	Normal	20	0	129	357	237.3	63.89	3.8316	482.1	mg/kg
Mercury	Lognormal	20	65	.04U	0.12	0.072	0.031	3.8316	0.191	mg/kg
Molybdenum	Х	20	91	. 29 U	0.9U	Х	Х	3.8316	х	mg/kg
Nickel	Normal	20	0	3.8	14	9.63	2.64	3.8316	19.74	mg/kg
Potassium	Normal	20	0	1110	2830	2061.2	453	3.8316	3797	mg/kg
Selenium	Nonparam	20	39	. 29 U	1.4	0.634	0.295	3.8316	1.76	mg/kg
Silicon	Normal	20	0	934	1650	1383.5	179	3.8316	2069	mg/kg
Silver	X	20	100	.19U	.22U	Х	Х	3.8316	Х	mg/kg
Sodium	Lognormal	20	0	43.8	105	62.16	14.84	3.8316	119.02	mg/kg
Strontium	Lognormal	20	0	9.6	45.2	28.44	10.25	3.8316	67.92	mg/kg
Thallium	X	14*	100	.385U	.445U	X	Х	4.2224	X	mg/kg
Tin	X	20	91	1.35U	2.9	Х	Х	3.8316	Х	mg/kg
Vanadium	Normal	20	0	10.8	45.8	27.85	8.87	3.8316	61.84	mg/kg
Zinc	Normal	20	0	21.1	75.9	49.56	12.1	3.8316	95.92	mg/kg
Radium-226	Lognormal	20	0	0.1	0.805	0.619	0.153	3.8316	1.20	pCi/g
Radium-228	Normal	20	0	0.2	2.3	1.35	0.48	3.8316	3.189	pCi/g
Uranium-233/234	Lognormal	20	0	0.6	3.1	1.097	0.578	3.8316	3.31	pCi/g
Uranium-235	Lognormal	20	0	0.11	0.34	0.0539	0.02	3.8316	0.13	pCi/g
Uranium-238	Lognormal	20	0	0.74	2.6	1.09	0.455	3.8316	2.83	pCi/g

a = All UTLs calculated assuming a normal distribution.

X = Not applicable because > 80% of data were non-detects.

[%] Non-detects are calculated from all accepted valid data except equipment rinsates.

Min and Max values: lowest/highest detected value or, if no detected values, 1/2 IDL followed by U.

Uranium-238 had 2 outliers removed for calculation of UTL; outliers retained for summary statistics.

^{*} Six thallium samples were rejected during the validation process.

TABLE E-2

SUMMARY STATISTICS FOR BSCP GROUP 1 ANALYTES: SUPPORTING DATA TYPES

Analyte	Distri- bution	Count (n)	% Non- Detect	Min	Max	99/99 UTL	Mean	Standard Deviation	
Ammonia	Normal*	20	39	0.5U	7	NC	2.0333	1.8977	mg/kg
Carbonate	Normal*	20	100	5U	5.5U	NC	X	X	mg/kg
Nitrate/Nitrite	Normal*	20	0	2	7	NC	4	1.6859	mg/kg
Oil & Grease	Normal*	20	0	52	130	NC	94.575	19.325	mg/kg
pН	Normal*	20	NA	6	6.8	NC	6.3575	0.2424	pН
Specific Cond.	Normal*	20	NA	0.1	0.53	NC	0.2083	0.0896	mmhos/cm
TOC	Normal*	20	0	4920	17600	NC	16133	2696.9	mg/kg
% Clay	Normal*	20	0	7	36	NC	20.45	8.62	%
% Sand	Normal*	20	0	22	76	NC	43.93	15.27	%
% Silt	Normal*	20	0	18	45.5	NC	35.76	7.52	%
Bulk Density	Normal*	20	0	0.9	1.2	NC	0.923	0.07	g/cm³

Normal*: Distribution assumed to be normal for summary statistics of supporting data

NC = Not calculated

TOC = Total Organic Carbon

Min and Max Values: lowest/highest value detected if no detached values, 1/2 IDL followed by U.

X = Not applicable because greater than 80% were non-detects.

TABLE E-3

SUMMARY STATISTICS FOR BSCP GROUP 2 ANALYTES: FALLOUT RADIONUCLIDES AND SUPPORTING DATA

Analyte	Distri- bution	Count (n)	% Non- Detect	Min	Max	Tol Fact	99/99 UTL	Mean	S.D.	Units
Fallout Radionuclides			·							
Americium-241	Nonparam	50	0	0.001	0.025	3.1369	0.037	0.0107	0.006	pCi/g
Cesium-134	Nonparam	50	0	0.05	0.3	3.1369	0.369	0.2	0.056	pCi/g
Cesium-137	Lognormal	50	0	0.3	1.7	3.1369	2.25	0.941	0.372	pCi/g
Plutonium-239/240	Lognormal	50	0	0.017	0.072	3.1369	0.084	0.038	0.014	pCi/g
Strontium-89/90	Lognormal	50	0	0.065	0.64	3.1369	0.708	0.254	0.128	pCi/g
Supporting Data			<u> </u>	<u> </u>	<u> </u>	L		L,		
% Clay	Normal*	50	0	1	34	X	X	11.58	6.37	%
% Sand	Normal*	50	0	24	78	Х	X	53.29	11.97	%
% Silt	Normal*	50	0	20	51	Х	Х	35.21	7.49	%
Soil density	Normal*	50	0	0.8	1.2	X	Х	0.944	0.78	g/cm ³
Total Organic Carbon	Normal*	50	0	1.4	6.05	Х	Х	3.66	1.24	%

X = Not calculated or not applicable

Normal*: Distribution assumed normal for summary statistics of supporting data

S.D. = standard deviation

TABLE E-4

SUMMARY STATISTICS FOR ROCK CREEK GROUP 1 ANALYTES: METALS AND NATURALLY OCCURRING RADIONUCLIDES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation	Tol Factor	99/99 UTL*	Units
Aluminum	Lognormal	18	0	8550	17950	12993	2251.5	3.9604	21910	mg/kg
Antimony	X	_18	100	4.2U	7.3U	X	Х	3.9604	X	mg/kg
Arsenic	Normal	18	0	2.1	8.5	5.82	1.81	3.9604	12.86	mg/kg
Barium	Nonparam	18	0	120	470	195	84.58	3.9604	481.1	mg/kg
Beryllium	Lognormal	18	43	0.44	1.1	0.681	0.119	3.9604	1.1523	mg/kg
Cadmium	Nonparam	17	71	0.3U	1.8	0.732	0.434	4.0367	2.45	mg/kg
Calcium	Lognormal	18	0	2260	8810	5068.1	2220.5	3.9604	13862	mg/kg
**Cesium	Lognormal	18	48	.225U	75U	31.29	30.13	3.9604	831.6	mg/kg
Chromium	Normal	18	0	10.5	20.2	15.029	2.476	3.9604	24.85	mg/kg
*Cobalt	Lognormal	18	0	4.4	24	7.778	4.308	3.9604	24.839	mg/kg
Copper	Normal	18	0	7.7	18.45	12.964	3.629	3.9604	27.34	mg/kg
Iron	Lognormal	18	0	10400	24900	15382	3226.6	3.9604	28160	mg/kg
Lead	Lognormal	18	0	29.35	51	37.535	6.024	3.9604	61.392	mg/kg
Lithium	Normal	18	0	7.1	14.95	10.981	2.273	3.9604	19.97	mg/kg
Magnesium	Lognormal	18	0	1440	5195	2853.3	1050	3.9604	7011.6	mg/kg
*Manganese	Lognormal	18	0	188.5	2220	443.6	457.04	4.1233	2328.1	mg/kg
Mercury	X	18	96	0.03U	0.075U	X	Х	3.9604	Х	mg/kg
Molybdenum	X	18	96	0.7U	2.7	Х	X	3.9604	Х	mg/kg
Nickel	Normal	18	0	7.8	18.7	12.578	3.588	3.9604	26.8	mg/kg
Potassium	Normal	18	0	1950	4205	2977.9	575.43	3.9604	5157	mg/kg
Selenium	Normal	18	22	0.105U	0.76	0.43	0.196	3.9604	1.21	mg/kg
**Silicon	Nonparam	18	0	54.8	1845	780.96	700.48	3.9604	8180	mg/kg
Silver	х	18	100	0.5U	1.45U	X	X	3.9604	X	mg/kg
Sodium	Lognormal	18	43	56.9	192.5	115.37	33.658	3.9604	248.67	mg/kg
Strontium	Lognormal	18	0	20.9	79.05	35.335	13.821	3.9604	90.072	mg/kg
Thallium	Normal	18	65	0.105U	0.41	0.23	0.084	3.9604	0.563	mg/kg
Tin	X	18	39	10.75U	58.5	32.541	12.936	3.9604	83.79	mg/kg
Vanadium	Normal	18	0	20.95	45.6	31.603	60.49	3.9604	55.56	mg/kg
Zinc	Lognormal	18	0	41.4	70.58	55.818	7.784	3.9604	86.646	mg/kg
Radium-226	Lognormal	10	0	0.75	1.1	0.945	0.128	5.0737	1.5944	pCi/g
Radium-228	Normal	10	0	1.3	2.9	2.177	0.531	5.0737	4.874	pCi/g
Uranium-233/234	Lognormal	16	0	0.91	1.472	1.145	0.156	4.1233	1.7882	pCi/g
Uranium-235	Lognormal	16	0	0.011	0.12	0.053	0.033	4.1233	0.1891	pCi/g
Uranium-238	Lognormal	16	0	0.9	1.521	1.183	0.188	4.1233	1.9582	pCi/g

a = All UTLs are calculated assuming normal distribution.

X = Not applicable because > 80% data were non-detects.

[%] Non-detects are calculated from all accepted valid data except equipment rinsates.

Min and Max values: highest/lowest detected value or, if no detected values, 1/2 IDL followed by U IDL = instrument detection limit.

^{*}Manganese contains 2 outliers, cobalt one; outliers included in summary statistics, not included for UTLs.

^{**}Cesium and Silicon exhibit bimodal distributions; Cesium bimodal is due to two different IDLs

All UTLs are calculated assuming normal distribution.

TABLE E-5

SUMMARY STATISTICS FOR ROCK CREEK: SUPPORTING DATA TYPES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation	99/99 UTL	Units
Ammonia	Normal*	9	50	0.172U	4.81	1.614	1.56	NC	mg/kg
Carbonate	Х	3	100	25U	25U	X	X	X	mg/kg
Nitrate/Nitrite	Normal*	9	0	0.705	4.79	2.319	1.47	NC	mg/kg
Oil & Grease	Normal*	9	10	27U	160	81.7	40.7	NC	mg/kg
pН	Normal*	6	0	6.39	9.1	7.63	0.93	NC	pН
Specific Conductance	Normal*	6	0	11.2	32.75	22.06	9.43	NC	umhos/cm
Total Organic Carbon	Normal*	6	0	9970	19900	15570	3783	NC	mg/kg

X = Not calculated because 100% of data were non-detects.

Normal* = Assumed to be normal distribution for summary statistics of supporting data

NC = Not calculated

TABLE E-6

SUMMARY STATISTICS FOR ROCK CREEK, GROUP 2 ANALYTES: FALLOUT RADIONUCLIDES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation		99/99 UTL	Units
Americium-241	Lognormal	14	0	0.0095	0.036	0.02	0.007	4.3372	0.05036	pCi/g
Cesium-134	Nonparam	9	0	0.071	0.1	0.084	0.012	5.3889	0.148667	pCi/g
Cesium-137	Lognormal	12	0	0.71	2.5	1.41	0.49	4.633	3.68017	pCi/g
Plutonium-239/240	Lognormal	18	0	0.026	0.1	0.055	0.014	3.9604	0.110446	pCi/g
Strontium-89/90	Normal	9	0	0.095	1	0.618	0.298	5.3889	2.23892	pCi/g

All UTLs are calculated assuming normal distribution.

1.0 INTRODUCTION

This report for the Background Soils Characterization Program (BSCP) meets the objectives of background characterization of surficial soils as required by the Interagency Agreement (IAG) (1991) among the U.S. Environmental Protection Agency (EPA), the State of Colorado, and the U.S. Department of Energy (DOE) for the Rocky Flats Environmental Technology Site (RFETS).

Data for background surficial soils provide a baseline against which data from Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFIs) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigations (RIs) may be compared. The results of these comparisons are used to help identify site-specific contamination within Operable Units (OUs) at RFETS. Data for the physical and chemical properties of background surficial soils also provide a baseline for other environmental programs that monitor for potential contaminant releases.

Background data can also be used for decision-making with respect to the establishment of reasonable cleanup goals and for justifying a waiver for complying eiht applicable of relevant and appropriate requirements (ARARs). These data also provide a benchmark in assessing human health risks due to site contaminantion, via the soil ingestion and inhalation pathways. To properly evaluate the added risk for site contamination via these pathways, data are required to characterize the chemical and physical properties of the upper 5 centimeters (cm) of soil in areas thought to be unaffected by activities at RFETS (i.e., background areas). The risk from background alone may then be assessed and compared with risk calculated using OU site data.

1.1 SCOPE

The Background Geochemical Characterization Report (DOE, 1993) provided baseline data for subsurface soils (i.e., geologic materials), stream water and sediments, seep water and sediments, and groundwater, but did not provide data for surficial soils. The scope of Phase I of the BSCP included (1) the characterization of chemical and physical properties of surficial soils and (2) the verification of the Rock Creek area as representative of background conditions. Phase II of the BSCP, as outlined in the Background Soils Characterization Plan (DOE, 1994), was designed to further characterize background soils to a depth of 1.2 meters (m), and may be implemented if needed.

Surface-soil samples from the Rock Creek area were collected in 1992 and 1993 in support of RCRA/CERCLA investigations for Operable Unit 1 (OU1) and Operable Unit 2 (OU2) to establish background soil chemistry for determining the nature and extent of contamination and for identifying chemicals of concern for human health and ecological risk assessments. The Rock Creek sample locations were selected to represent soil types in OU1 and OU2 and are located upwind and upgradient of suspected contaminant sources. However, the Rock Creek study was not planned and conducted according to the EPA's data quality objectives (DQO) process, and no exploratory data analysis (EDA) was conducted. Therefore, even though the BSCP EDA indicated that Rock Creek was in a background area for naturally occurring analytes

(DOE, 1994), a carefully designed program (i.e., the BSCP) was implemented to provide a fully defensible background data set for surficial soils.

The EDA performed during the development of the *Background Soils Characterization Plan* (DOE, 1994) indicated that two sampling efforts were appropriate to characterize background surface soils and augment the existing background data set (i.e., Rock Creek) for the chemicals in the vicinity of RFETS. Those sampling efforts were completed as follows:

- Group 1 (Metals, Naturally Occurring Radionuclides, and Organic Compounds):

 Twenty samples were collected just north of RFETS from soils that are similar in topography, parent material, and historic use to soils on RFETS. These samples were analyzed for naturally occurring radionuclides (uranium and radium isotopes), metals and selected inorganic constituents, semivolatile organic compounds (SVOCs), pesticides, and polychlorinated biphenyls (PCBs).
- Group 2 (Fallout Radionuclides):
 Fifty samples were collected from remote (offsite) locations along the Colorado Front Range for measuring activities in soil from fallout radionuclides (americium-241, cesium-134, cesium-137, strontium-89+90, and plutonium-239+240).

1.2 PROJECT OBJECTIVES

The project objectives for the BSCP are discussed in greater detail in the following sections of this report, but are summarized below for the convenience of the reader. Based on the DQO process utilized during development of the *Background Soils Characterization Plan* (DOE, 1994), the project objectives were as follows:

- Determine background concentrations of organics, metals, and radionuclides in surficial soils collected for the BSCP
- Provide remediation projects with 100-percent validated data that are technically and legally defensible, and are representative of background concentrations of constituents in surficial soils
- Compare BSCP data with Rock Creek data for surface soils, in order to assess the validity of the Rock Creek data as background for metals and radionuclides
- Compare the BSCP and Rock Creek data to data generated by other studies that have investigated the chemical and physical characteristics of background surficial soils, in order to put the results of the BSCP and Rock Creek studies into a larger, regional perspective.

An additional objective not included in the work-plan development, but considered helpful for present and future remediation projects, was to determine the mass-isotope ratio of plutonium-239/plutonium-240 for 12 remote (i.e., Group 2) samples. The mass-isotope ratios for regional

fallout for plutonium can be used in future studies at RFETS, as well as in other regional studies of fallout radionuclides.

1.3 HISTORICAL BACKGROUND OF THE SITE

The facility at Rocky Flats is a government-owned, contractor-operated site that was part of the nationwide complex for nuclear-weapons production. Prior to January 1992, the mission of the plant was to fabricate nuclear-weapons components from plutonium, uranium, and nonradioactive metals (principally beryllium and stainless steel). Additionally, the plant reprocessed plutonium that was removed from obsolete weapons. Both radioactive and nonradioactive wastes were generated at the plant.

Historically, wastes generated at the plant site were either disposed onsite, stored in containers onsite, or disposed offsite. Because of these past practices, the facility was proposed for inclusion on the Superfund National Priorities List (NPL) in 1984, and was formally included on the NPL in the October 4, 1989 Federal Register.

In January 1992, the primary mission of the facility was changed from manufacturing and reprocessing to one of environmental restoration, waste management, decontamination and decommissioning, and economic development. In July 1994, the name of the facility was formally changed from Rocky Flats Plant (RFP) to RFETS to better reflect the current mission of the facility.

Present waste-handling practices involve recycling of hazardous materials; onsite storage of hazardous, radioactive, and mixed wastes; and offsite disposal of radioactive materials. Preliminary assessments under the RFETS Environmental Restoration (ER) Program identified some of the former onsite storage and disposal locations as potential sources of environmental contamination.

The RFETS ER Program is part of the DOE ER Program, which was established to remediate inactive waste sites at DOE facilities. The DOE ER Program was mandated to remediate waste sites in compliance with environmental laws and regulations. Specifically, the program includes site identification and characterization, remedial design and remedial action, and post-closure activities such as monitoring and field inspections at inactive radioactive, hazardous, and mixed-waste sites. The BSCP and the results presented in this report directly support the RFETS ER Program by providing baseline information for these activities.

1.4 PHYSICAL SETTING

RFETS is located in northern Jefferson County, Colorado, approximately 16 miles northwest of Denver (Figure 1-1). Other surrounding cities include Arvada, Boulder, Broomfield, and Westminster, which are located less than 10 miles from RFETS. RFETS consists of approximately 10 square miles (6,550 acres) of federally owned land in Sections 1 through 4 and 9 through 15 of T2S, R70W, 6th Principal Meridian. Major buildings are located within the

RFETS security area of approximately 400 acres. The security area is surrounded by a buffer zone of approximately 6,150 acres (Figure 1-2).

The natural environment of RFETS and vicinity is influenced primarily by its proximity to the Front Range of the Rocky Mountains. RFETS is directly east of the north-south trending Front Range, and is located about 16 miles east of the Continental Divide at an elevation of approximately 6,000 feet above mean sea level. RFETS is located on a broad, eastward-sloping pediment surface of coalescing alluvial fans. The fans extend approximately 5 miles in an eastward direction from their origin at Coal Creek Canyon and terminate on the east at a break in slope to low rolling hills. The operational area at the RFETS is located near the eastern edge of the fans on a terrace between stream-cut valleys (North Walnut Creek and Woman Creek).

Geologic units beneath RFETS consist of unconsolidated surficial units of Quaternary age (Rocky Flats Alluvium, various terrace alluvia, valley-fill alluvium, and colluvium), which unconformably overlie Cretaceous-aged bedrock (Arapahoe Formation, Laramie Formation, and Fox Hills Sandstone) (Figure 1-3). This geologic sequence forms part of a monoclinal fold with a western edge composed of uplifted strata of Mesozoic age that become younger to the east. Figure 1-4a and 1-4b shows the surficial geology of the RFETS (EG&G, 1992a) and Figure 1-5 depicts the erosional surfaces and alluvial deposits in cross-section. A comprehensive summary of the geology of RFETS is provided in the Geologic Characterization Report (EG&G, 1995a).

1.4.1 Climate and Meteorology

The area surrounding RFETS has a semiarid climate characteristic of most of the central Rocky Mountain region. Approximately 40 percent of the 15 inches of annual precipitation falls during the spring season, much of it as snow. Thunderstorms (from June through August) account for an additional 30 percent of the annual precipitation. Autumn and winter are drier seasons, accounting for 19 and 11 percent of the annual precipitation, respectively. Snowfall averages 85 inches per year, most falling from October through May (DOE, 1980). Temperatures are moderate; extremely warm and cold weather is usually of short duration. On the average, daily summer temperatures range from 55 to 85 degrees Fahrenheit (°F), and winter temperatures range from 20° to 40°F. The low average relative humidity (46 percent) is due to the moisture-blocking effect of the Rocky Mountains. Wind, temperature, and precipitation data are collected at RFETS and are summarized annually.

Winds at RFETS are predominantly northwesterly and less than 15 miles per hour (mph); winds greater than 6.7 mph with easterly components are infrequent. However, RFETS is noted for its strong, gusty winds that are commonly associated with thunderstorms and the passage of weather fronts. The highest wind speeds typically occur as westerly windstorms known as "chinooks." These winds generally occur from late November into April, but reach their height in January. Chinook wind speeds typically exceed 75 mph, and gusts may exceed 100 mph. In addition, moderately strong northerly or southerly winds are common in winter and summer, respectively, and easterly winds ("upslopes") may be associated with heavy snowfall or other precipitation. The steep-sided canyons along the Front Range tend to channel the airflow during

both upslope and downslope conditions (DOE, 1980; EG&G, 1995b). Figure 1-6 illustrates a typical annual summary of wind velocity and frequencies at RFETS.

1.4.2 Soils of RFETS

Soils of RFETS form a pattern related to geologic parent materials, geomorphic landforms, relief, climate, and natural vegetation. Recognizing the relationships between types of soils and particular types of landscapes or segments of landscapes over the broad region that surrounds RFETS, the United States Department of Agriculture (USDA) Soil Conservation Service (SCS) developed map-unit models on aerial photographs to reasonably predict the types of soils in an area. The boundaries of the map units were refined and the map-unit models were tested by digging test pits and recording the characteristics of the soil profiles studied.

Soils are taxonomically classified based on a particular set of soil properties (e.g., number and size of clasts, particle-size distribution, acidity, distribution of plant roots, and structure of soil aggregates) and the arrangement of horizons within the soil profile. The soil taxonomic system is hierarchical, enabling categorization into increasingly greater detail. The system is organized in increasing level of detail by order, suborder, great group, subgroup, and series. For the RFETS area, Figure 1-7 illustrates the SCS map units at the soil-series level. Figure 1-8 illustrates soils at the subgroup level, modified by particle size and depth class. Soil series within a landscape type at RFETS are similar at the subgroup level.

Soils of RFETS consist of four general landscape types and geologic map units:

- Pediment soils are located on the broad, dissected, eastward-sloping pediment surface in the western portion of the site. These soils are associated with the Rocky Flats Alluvium (Qrf) geologic map unit.
- Valley-slope soils are located in the stream-cut valleys of the intermittent Rock Creek, Walnut Creek, and Woman Creek drainages. These are associated with the Laramie Formation (Kl), Arapahoe Formation (Ka), and Landslide (Qls) geologic map units.
- Hilltop soils of the eastern third of RFETS are similar to valley-slope soils and are associated with the Laramie (Kl) and Arapahoe (Ka) Formations. Localized areas on hill summits are associated with Terrace Alluvium (Qta).
- Drainage-bottom soils are soils forming in recent alluvium (Qa) along drainage bottoms.

A comparison between the geologic map (Figure 1-3) and the soils map (Figure 1-7) illustrates the relationship between soils at the soil-series level and geologic map units; this relationship was utilized in implementing the sampling design for Group 1 analytes (see Subsection 3.2). Table 1-1 summarizes the soil series and taxonomic classifications with their associated landscape types and geologic formations.

SECTION 1

TABLES

TABLE 1-1

SOIL TAXONOMIC TABLE

ORDER	SUBORDER	GREAT GROUP	SUBGROUP	CLASS MODIFIER	SERIES	GEOLOGY	LANDSCAPE	SIMILAR GROUP
Mollisol	Ustoll	Paleustoll	Aridic	clayey- skeletal	Flatirons	Qrf	Pediment	1
		Argiustoll	Aridic	loamy- skeletal	Nederland	K1, Ka, Qls	Valley slope	2
					Valmont	Qrf	Pediment (East)	2
				fine	Nunn	Qta	East hillslopes	ю
				fine	Standley	Ka, KI, Qls	East hillslopes	m
				fine, mod. deep	Leyden	Ka, KI, Qls	East hillslopes	к
				clayey, shallow	Primen	Ka, KI, Qis	East hillslopes	3*
			Torrertic	fine	Denver	Ka, KI, Qis	Valley slope	3
				fine	Englewood	Ka, KI, Qa	Valley toeslope	es es
				fine, mod. deep	Kutch	Ka, KJ, Qls	Valley slope	ю
	Aquoll	Haplaquoll	Cumulic	fine-loamy	McClave	Qa, KI	Drainage bottom	4
Entisol	Fluvent	Torrifluvent	Ustic	fine-loamy	Haverson	Qa, KI	Drainage bottom	4
	Orthent	Torriorhent	Ustic	clayey, shallow	Midway	Ka, KI, Qls	Valley slope	3*

Note:3* The shallow soils (Primen and Midway series) have been included as similar to Group 3 soils because they occur with Group 3 soils and are not easily mapped separately

SECTION 1

FIGURES

U.S. DEPARTMENT OF ENERGY
ROCKY FLATS ENVIRONMENTAL
TECHNOLOGY SITE, GOLDEN, COLORADO
FIGURE 1-3
GENERALIZED EAST-WEST
CROSS-SECTION
FRONT RANGE TO DENVER BASIN

Source: Boulder County Planning Commission, 1983 and Scott, 1960

U.S. DEPARTMENT OF ENERGY
ROCKY FLATS ENVIRONMENTAL
TECHNOLOGY SITE, GOLDEN, COLORADO
FIGURE 1-5
EROSIONAL SURFACES AND
ALLUVIAL DEPOSITS EAST OF
THE COLORADO FRONT RANGE

PREPARED FOR

U.S. DEPARTMENT OF ENERGY
ROCKY FLATS ENVIRONMENTAL
TECHNOLOGY SITE, GOLDEN, COLORADO

FIGURE 1-6
WIND ROSE FOR THE
ROCKY FLATS ENVIRONMENTAL
TECHNOLOGY SITE
1992-24 HOUR

2.0 METHODS

2.1 STUDY DESIGN

Protocol methods for site selection, sample collection, sample handling, data handling, laboratory analysis, statistical analysis, and quality control were detailed in the *Background Soils Characterization Plan* (DOE, 1994) and were followed where appropriate. As noted in this work plan, different sampling methods have been used to sample surficial soils at RFETS.

For plutonium in particular, various sampling methods have been used to provide samples to assess risk to human health from the inhalation pathway and to determine plutonium inventories in the soil. Typically, the methods for determining the plutonium inventory involve sampling soils to depths ranging from near zero to 20 or 30 cm, whereas the methods for assessing health risk through the inhalation pathway involve depths from near zero to 5 cm. Comparability between historic data for surficial soils and recent data may, therefore, be dependent on the sampling method used.

Since 1990, two different methods of sampling surficial soils have been used at RFETS for RCRA/CERCLA-related activities. These two methods are referred to as the CDPHE method and the Rocky Flats (RF) method; both are outlined in EG&G SOP GT.08 (EG&G, 1993). Comparison of plutonium activities measured using either the CDPHE and RF sampling methods is described in the OU3 RFI/RI and in the *Background Soils Characterization Plan* (DOE, 1994), and illustrated here in Figure 2-1. To summarize briefly, the CDPHE method obtains a composite sample from 25 subsample locations within a 4-acre to 10-acre plot. Each subsample is collected by removing the soil from a 5.1-cm by 6-cm area, with a 0.64-cm-deep template driven into the soil. In contrast, the RF method obtains a composite sample from 10 subsample locations within two one-meter-square areas; each subsample is collected by removing soil from a 10-cm by 10-cm square, with a 5-cm-deep template driven into the soil.

To meet the objectives of Phase I of the BSCP, soil samples were collected using the RF method and analyzed for various constituents. The RF method was utilized in this study to ensure consistency with soil sampling performed at the various OUs; the OUs will be the primary users of the BSCP data. In addition, the Rock Creek samples were collected using the RF method, thereby necessitating use of the RF method for BSCP samples to make the data sets comparable.

Group 1 samples were collected from 20 sites located in Boulder County Open Space, just north of RFETS, in soils similar to RFETS soils (Figure 2-2). These samples were analyzed for naturally occurring constituents (metals, and radium and uranium isotopes), selected organic compounds (SVOCs, pesticides, PCBs), and supporting chemical and physical parameters. The naturally occurring constituents and supporting parameters are listed in Table 2-1; the organic compounds are listed in Table 2-2.

Group 2 samples were collected from 50 sites remote from RFETS and located in undisturbed areas along the Front Range of Colorado (Figure 2-3). These samples were analyzed for radionuclides distributed globally by fallout from nuclear-weapons testing. The fallout analytes are listed in Table 2-3. In addition, 12 of the 50 Group 2 samples were also analyzed by thermal ion mass spectrometry (TIMS) to determine the mass ratio of two isotopes of plutonium (plutonium-240/plutonium-239 ratio).

Samples from all 70 sites (20 Group 1 and 50 Group 2 samples) were also analyzed for grain-size distribution, bulk density, and total organic carbon. These supporting parameters are useful in for assessing natural variability due to the particular geochemical behavior of an analyte (e.g., adsorbed trace metals may be expected in higher concentrations in a finer-grained soil, due to the greater surface area per unit volume of soil).

2.2 SELECTION OF SAMPLING SITES

2.2.1 Group 1 Analytes: Metals, Naturally Occurring Radionuclides, Organic Compounds, and Other Supporting Parameters

The EDA performed during development of the work plan for the BSCP (DOE, 1994) indicated that the sample size and location of Rock Creek sampling sites were adequate for characterizing background soils for naturally occurring constituents, with the possible exception of uranium-235, which required additional samples to increase the sample size. To collect additional samples for uranium-235 analysis and provide a more extensive data set for the naturally occurring constituents and selected organic compounds such as the SVOCs, pesticides, and PCBs, 20 additional sampling locations were selected offsite in soils similar to RFETS soils. Site selection for a suitable background area used the following criteria:

- Sites outside the influence of potential contamination from RFETS
- Soils similar to RFETS soils
- Property access readily available
- Sites undisturbed by recent (since 1950) human activity (e.g., no plowing, tilling, or overturning of soil).

The EDA indicated that the Group 1 sampling area, as well as most offsite areas, was not within RFETS's sphere of influence for the naturally occurring constituents and organic compounds. Offsite sampling, as opposed to sampling in the RFETS Buffer Zone, was selected to obtain a wider spacing between samples. Because the area north of RFETS has geologic parent materials and landforms that are similar to those at RFETS, and is accessible and relatively undisturbed (Open Space owned by Boulder County and the City of Boulder), the area north of RFETS was selected for sampling.

For consistency with the Golden area soil survey (SCS, 1980), which included all of RFETS, the BSCP team used aerial photos, geologic maps, and site visits to extend the Golden area map-unit design into Boulder County for the purpose of selecting sampling locations, rather than using the Boulder County map-unit design (SCS, 1975).

Soil types that are associated with particular landforms and geologic parent materials at RFETS were mapped into the Boulder County study area. Three landscape types, or landforms, were selected for sampling in order to represent RFETS soils: (1) pediment surfaces, (2) valley slopes, and (3) drainage bottoms. Seven sites for the pediment-surface soils (P1 through P7), seven sites for valley-slope soils (V1 through V7), and six sites for drainage-bottom soils (D1 through D6) were randomly selected.

The randomly selected sites were field-checked and evaluated for signs of disturbance. If the site appeared disturbed (e.g., animal burrowing), another site was randomly selected and evaluated prior to sampling. The sites were located by a Global Positioning System (GPS) receiver using a post-processing method to obtain sub-meter accuracy. The sites for Group 1 sampling and those for the Rock Creek sampling are shown on Figure 2-2 and listed in Table 2-4.

2.2.2 Group 2 Analytes: Plutonium and Other Fallout Radionuclides

Previous studies of the biogeochemical behavior of plutonium have indicated that once it enters terrestrial ecosystems, it is generally immobile (Muller and Sprugel, 1977; Litaor, 1993) except for the influence of macrofauna (e.g., earthworms and prairie dogs), which may increase vertical mixing (Bernhardt, 1976; Litaor et al., 1994). Erosion, therefore, can be considered the primary transport mechanism for plutonium after it is deposited on the soil. However, the overall distribution of atmospheric fallout onto the ground is influenced by large-scale factors such as precipitation, weather patterns, and topography.

As noted previously, americium-241, cesium-134, cesium-137, plutonium-239+240, and strontium-89+90 do not occur naturally in soils. Fallout from the atmospheric testing of nuclear weapons and site-specific sources contributed these isotopes to surficial soils. In order to minimize the potential influence of plutonium sources from RFETS, Group 2 samples were collected from 50 distant locations along the Front Range. The 50 locations ranged from 12 to 106 miles from RFETS. Table 2-3 lists the analytes included for Group 2 sampling; Table 2-5 presents the locations where the remote samples were collected.

The location of the Rock Creek area in the RFETS Buffer Zone — although upwind and upgradient of the RFETS Industrial Area — was questioned as to whether or not the Rock Creek area was truly representative of the background conditions for fallout radionuclides in surficial soils. The EDA of all RFETS soil data that was performed during the work-plan development for the BSCP (DOE, 1994) gave no clear answer to this question. The EDA indicated that americium displayed a similar spatial distribution to that of plutonium and, therefore, americium levels in the Rock Creek area were also in doubt as representative of background (DOE, 1994). However, the EDA suggested that cesium-134, cesium-137, and

strontium-89+90 were not windborne contaminants from RFETS and that the Rock Creek area could be considered to represent area-wide background for these radionuclides (DOE, 1994).

The objective of this portion of the BSCP study was to establish background soil concentrations or activity levels — which are reported in units of picoCuries per gram (pCi/g) or Bequerels per kilogram (Bq/kg) — for fallout radionuclides, notably plutonium. To meet the DQO criterion of comparability, the sampling and analytical methods used in this study are comparable to those used by the various OUs as prescribed in General Radiochemistry and Routine Analytical Services Protocol (GRRASP). The Rock Creek samples collected by OU1 and OU2 followed the same sampling and analysis protocols. For plutonium, the minimum detection activity (MDA) for the BSCP samples was lowered from the standard 0.03 pCi/g to 0.02 pCi/g to accommodate the lower activities expected for background; the lower MDA was achieved by increasing the count time for alpha spectroscopy. Another method of lowering the MDA is to increase the sample aliquot size, which has been shown to dramatically influence the plutonium results (Bernhardt, 1976; Sill, 1982). Therefore, to minimize the number of variables between the BSCP study and other RFETS studies, the aliquot size was kept similar to typical GRRASP procedures (i.e., 1 to 3 grams).

Criteria for selection of BSCP sampling sites were similar to those used in other studies of fallout radionuclides in surficial soils (McArthur and Miller, 1989; Bernhardt, 1976). These criteria were followed to minimize additional variability due to fallout distribution and erosion. As described further below, examination of topographic maps, inspection of proposed sampling sites, and discussions with landowners were performed to evaluate whether or not a given site met these criteria. The criteria are as follows:

General:

- Sites remote from RFETS
- Permission for property access readily available
- Precipitation generally similar to that at RFETS (12 to 16 inches per year)
- Relatively flat, open area, at least 40 feet in diameter, away from man-made structures, ditches, roadways, and any natural obstructions
- Minimal rock outcrops or debris
- Site similar in nature to surrounding land and at the same elevation; that is, not raised or depressed compared to the general grade of the land
- Ground sufficiently level to minimize runoff or water erosion.

Specific (Undisturbed since 1950):

- No plowing, tilling, or overturning of the soil
- No grading
- Minimal burrowing activity from rodents, moles, prairie dogs, and other animals

- No removal or addition of topsoil
- No flash flooding.

Specific (Ground Cover Present):

- Since 1950, the site has possessed some type of ground cover, such as grass, to minimize wind or water erosion
- Site not subjected to blowouts or buildup from wind, or silt buildup from irrigation.

The process of site selection began with identifying on a topographic map those areas that potentially fit the selection criteria. Next, permission to sample was requested from the agency or individual who owned the property, and potential sampling sites in each area were located at random. In some cases, the landowner or agency representative recommended specific areas, which they knew had been undisturbed since 1950. Each potential sampling site was then visited and evaluated based on the selection criteria. If the site was rejected, another potential sampling site in the area was located, then evaluated and selected or rejected. This process continued until 50 sites were chosen. The specific sampling sites were located by GPS equipment using a post-processing method to obtain accuracy to less than one meter. Before leaving the field, the sites were marked on a 7.5-minute topographic quadrangle map.

2.3 SAMPLE COLLECTION, HANDLING, AND DATA MANAGEMENT

Prior to the commencement of field activities, all personnel received training for proper sample collection, handling, and data management procedures, as described below.

2.3.1 Sample Collection

Five 2,500-cubic-cm samples were collected from one square meter and were composited following the RF method for soil sampling (EG&G EMD OP GT.08, 1993). As noted in Section 2.1 of this report, the RF method (Figure 2-4) employs a 10-cm by 10-cm stainless-steel jig driven 5 cm into the soil. Soil samples are removed from the interior of the jig with a stainless-steel scoop and placed in a stainless-steel pan. Five samples were collected by this method from within a one-square-meter area; one sample was collected from each of the four interior corners and one was collected from the center of the square area. These five samples were sieved through a 10-mesh metal sieve, placed in a stainless-steel bowl, and mixed. In order to prevent cross-contamination between samples, the sieve, jig, trowel, and pan were decontaminated prior to collecting each sample by following a protocol procedure [EG&G EMD OP FO.3, General Equipment Decontamination, (EG&G, 1995c)].

2.3.2 Sample Handling

The composited soil sample was placed in a glass sample container, which was labeled according to protocol procedure and then shipped to the laboratories following protocol procedure [EG&G EMD OP FO.13, Containerization, Preserving, Handling, and Shipping of

Soil and Water Samples (EG&G, 1992b)]. Sample containerization and holding-time requirements [EG&G EMD OP FO.19, Base Laboratory Work (EG&G, 1992c)] are summarized in Table 2-6. Chain-of-custody (COC) forms accompanied the sealed samples to the laboratory to ensure sample integrity [EG&G EMD OP FO.14, Field Data Management (EG&G, 1994a)].

2.3.3 Data Management

2.3.3.1 Field Data Management

Field data (e.g., date of sample, time of sample, sample number, sample location code, crew members present, and a brief description of the vegetation and soils) were recorded in field log books and standardized forms for sampling of surficial soils. Other field data include topographic maps, photographs of the site, samples of predominant vegetation, and computer printouts from GPS post-processing.

2.3.3.2 Analytical Data Management

All laboratory data were electronically entered into the Rocky Flats Environmental Database System (RFEDS) following protocol methods. GPS location data were first reduced to latitude and longitude based on the WGS84 spheroid using ASHTECH PRISM™ software, and then converted to the RFETS standard state-plane coordinate system (NAD 1927) using ARC-INFO™ software. Location data were then entered into RFEDS. Analytical data and location data were also entered into the RFETS Geographic Information System (GIS) database.

2.4 LABORATORY ANALYTICAL METHODS

RFETS has established requirements for analytical chemistry services for environmental samples collected in support of the RFETS ER Program. These requirements are established in Parts A and B of the EG&G Rocky Flats GRRASP (1988a, 1988b). The GRRASP requires analyses of EPA's target compound list (TCL) organics, SVOCs, pesticides, and PCBs. In addition, the GRRASP requires total analyte list (TAL) metals to be analyzed using EPA Contract Laboratory Program (CLP) methods and procedures. The GRRASP also requires analyses of all non-CLP and radiochemistry parameters to be modified parallel the Quality Control (QC) requirements of CLP-type analyses. Therefore, all organic and inorganic laboratory analytical data in this BSCP report meet the QC needs equivalent to analytical level-IV data.

Mass-spectrometer analyses of plutonium-239 and plutonium-240, performed by Los Alamos National Laboratory (LANL), did not follow GRRASP procedures; these analyses were non-routine, so are not detailed in the GRRASP. However, the results of LANL analyses are important to this study, and are discussed in Section 3.4 of this report. Analytical results of the LANL analyses are provided in Appendix A.

2.4.1 Group 1 Analytes

Samples from the 20 Group 1 sites were analyzed for metals, naturally occurring radionuclides, and selected organic compounds, as well as supporting data (see Appendix B). The analyte list, laboratory, laboratory methods used, and the contract required detection limits (CRDLs) for each analyte (except antimony) are presented in Appendix C. Procedures and methods are also discussed in Appendix C. With the exception of antimony, all metals were analyzed using CLP methods as described in the GRRASP. The more-sensitive method employed for analysis of antimony (used by the contracted lab, Quantere, formerly IT Pittsburgh) used a Thermo Jarrel-Ash™ inductively coupled plasma (ICP) trace analyzer. Instrument detection limits (IDLs) for antimony were calculated by analyzing a standard sample containing three to five times the estimated IDL, seven consecutive times for each of three non-consecutive days. The IDL established for this method was approximately 0.38 mg/kg of soil, varying slightly with the moisture content of the soil sample.

2.4.2 Supporting Data From Group 1 Sampling

All samples were analyzed for total organic carbon (TOC), grain-size distribution, and bulk density. Samples from the 20 Group 1 locations near RFETS were analyzed for pH, nitrate/nitrite, ammonia, carbonate as CaCO₃, and oil and grease. The sampling location, laboratory method used, and the CRDL for each supporting analyte are also presented in Appendix C.

2.4.3 Group 2 Analytes

Samples from the 50 Group 2 sites were analyzed for americium-241, cesium-134, cesium-137, plutonium-239+240, and strontium-89+90. These analytes do not occur naturally, but are known to be present in background soils because of world-wide fallout from atmospheric nuclear-weapons testing. The sample location, laboratory method used, and CRDL for each analyte are presented in Appendix C.

Total plutonium analyses

Analysis for plutonium can be broken into the following steps (Bernhardt, 1976):

- 1. Dissolving sample and adding tracer. This step may or may not involve the use of hydrofluoric acid (HF) to dissolve the silica. The complete-dissolution method involves the use of excess HF; the leaching method does not.
- 2. Isolating desired elements from interfering elements by chemical separations.
- 3. Electroplating sample on planchet or metallic disk.
- 4. Counting sample emissions by appropriate technique. Alpha-pulse-height analysis is used for plutonium samples. Using this analytical method, plutonium-239 cannot be separated from plutonium-240 by alpha energies, so the two isotopes are usually reported as plutonium-239+240.
- 5. Calculating sample activity and estimating analytical error.

Samples from all the Group 2 sites were analyzed for plutonium-239+240 content by a contracted laboratory (TMA Thermal Analytical, Inc.) using a protocol method outlined in the GRRASP. This protocol method uses HF acid for complete dissolution of a 3-gram aliquot of soil, before the plutonium is recovered from the solution and electro-deposited onto a stainless-steel disk, in preparation for alpha spectrometry. The complete-dissolution method has been used at RFETS for total plutonium analysis since 1990. It was appropriate, therefore, that the BSCP utilize this method in order to ensure comparability with other post-1990 data at RFETS. Other recent sampling efforts (Webb et al., 1994) and historical sampling efforts may have used a leaching method, different aliquot sizes, and other techniques; each of which may introduce some method-related variability in the results for low-level plutonium values (Bernhardt, 1976; Sill, 1982).

Plutonium Isotopic Ratios

Samples from 12 of the 50 remote locations (see Table 3-2) were analyzed by TIMS at LANL. The TIMS analysis resolved total plutonium into the isotopes, plutonium-239 and plutonium-240. LANL cooperated with TMA Norcal for this portion of the project. Stainless-steel planchettes that contained total plutonium for the 12 samples were sent to LANL. Results from the isotopic analyses are discussed briefly in Section 3.4; Appendix A provides the entire LANL report for the TIMS analysis.

Other Fallout Radionuclides

Analyses for the other fallout radionuclides (strontium-89+90, cesium-134, and cesium-137) were conducted according to procedures outlined in the GRRASP.

2.4.4 Supporting Data From Group 2 Sampling

All 50 samples were analyzed for total organic carbon (TOC), grain-size distribution, and bulk density. The sampling location and the laboratory method used are presented in Appendix C.

2.5 STATISTICAL METHODS

This section discusses preparation of data for statistical analyses, treatment of non-detects, assessment of data distribution, treatment of outliers, and calculation of means and summary statistics.

2.5.1 Preparation of Data for Statistical Analyses

Data retrieved from RFEDS were prepared for statistical analysis by the following process:

- Remove rejected (i.e., R-validated) data
- Compare rinsate values with CRDL to determine the effectiveness of decontamination procedures

- Compare field duplicates with real-target data to determine relative percent difference (RPD)
- Query for QC Code REAL or DUP for Result Types TRG, REP or DUP
- Average the QC Code REALS and DUPs for each location to arrive at a site mean
- Determine distribution for each analyte (normal, lognormal, or nonparametric)
- Determine outliers using the American Society for Testing and Materials (ASTM) procedure or Rosner outlier test (Rosner, 1975)
- Transform lognormal data, if appropriate
- Count number of locations (averaged REAL/DUP pairs constitute one sample per location)

2.5.2 Treatment of Non-Detects

The percentage of non-detects (results less than the IDL and identified with RFEDS Qualifier code containing a "U") was calculated for the remaining data for metals, SVOCs, pesticides, and PCBs. The frequency of detects was calculated using all available real and duplicate samples. Section 3 discusses analytical results, the frequency of detects, and the maximum detected concentrations. All radionuclide data (excepting rejected and QC data) were considered detected, according to DOE Order 5400.1, which states that "All of the actual values, including those that are negative, *should* be included in the statistical analyses. Practices such as assigning a zero, a detect limit value, or some in-between value to the below-detectable data point, or discarding those data points can severely bias the resulting parameter estimates and *should* be avoided." That is to say, negative and zero values reported for radionuclides should be included "as is" in all statistical analyses.

The results for metals, SVOCs, pesticides, and PCBs that were less than the IDL and qualified with a Qualifier Code "U" were replaced with a value equal to one-half the IDL. In the RFEDS system, the RESULT field generally displays the IDL for "U" or "U*" qualified data for metals and organic analytes. The REPORTING LIMIT field in RFEDS may contain either the IDL, CRDL, or method detection limit (MDL).

2.5.3 Assessment of Distribution and Treatment of Outliers

The data were tested for normality, using both visual and statistical tests. Examination of probability plots for both the actual sample data and log-transformed data provided a visual determination of the distribution type. Statistical tests were then computed on both actual and log-transformed data. The Shapiro-Wilk test was used if data sets contained less than 50 samples and the Lilliefors test was used if data sets contained greater than 50 samples. An upper 95-percent significance was required to assign the distribution type (i.e., normal or lognormal); otherwise, the distribution was classified as nonparametric.

Outlier testing was then performed on either the actual data or log-transformed data, according to the distribution type. Log-transformed data were also used for nonparametric distributions. For data sets of less than 25 samples, the ASTM outlier procedure (ASTM, 1980) was used in an iterative manner. In this case, only one outlier can be determined at a

time. The outlier can be removed, statistics for the remaining population recalculated, and outlier testing can be performed again. This process is repeated until all outliers have been detected. For data sets of 25 samples or greater, the Rosner outlier test was used. This test does the interactive outlier testing and flags all outliers on both ends of the distribution. The Rosner Test is designed to avoid masking of one outlier by another (Gilbert, 1987). Masking occurs when an outlier goes undetected because its value is close to the value of another outlier (Gilbert, 1987).

2.5.4 Calculating Location Means

The results for REAL/DUP pairs were averaged for each sample location to compute a site mean for that location. In subsequent statistical analyses, the site mean represented one sample for that location. Eligible data for averaging at each location included all remaining data designated by any combination of REAL or DUP and TRG, DUP, or REP.

2.5.5 Summary Statistics

Summary statistics were computed on the reduced data set. Statistics reported for analytes having less than 80 percent non-detects include the mean, standard deviation, minimum, maximum, and the 99/99 upper tolerance limits (UTLs). For those analytes having more than 80 percent non-detects, only the minimum and maximum values are reported (i.e., the mean, standard deviation, and UTL were not calculated).

Data for metals and naturally occurring radionuclides were compared to data prepared similarly from the Rock Creek data set. Comparison tests between data sets included parametric or nonparametric analysis of variance (ANOVA) between data sets, and graphical comparisons (scatterplots, histograms, box-and-whisker plots, density plots, and probability plots).

Several ANOVA procedures were used, as appropriate for each analyte's distribution. Levene's test is a parametric ANOVA procedure for testing homogeneity for the variances between groups of data. Levene's test is not sensitive to non-normality in the data (EPA, 1992). The Kruskal-Wallis test is a nonparametric test that may be used to test for data shifts between independent data sets (Gilbert, 1987). A 0.05 (5%) significance level was used to determine whether the data sets were significantly different. The comparison test results are presented in Section 4.

SECTION 2

TABLES

This page intentionally left blank.

TABLE 2-1

LIST OF GROUP 1 ANALYTES: METALS, NATURALLY OCCURRING RADIONUCLIDES, AND SUPPORTING PARAMETERS (NEARBY SAMPLING SITE)

	METALS AND NATURA	LLY OCCURRING RADION	IUCLIDES				
Metals (Target Analyte	List and others)						
Aluminum	Chromium	Manganese	Strontium*				
Antimony	Cobalt	Mercury	Thallium				
Arsenic	Copper	Molybdenum*	Tin*				
Barium	Cyanide	Nickel	Vanadium				
Beryllium Iron Potassium Zinc							
Cadmium Lead Selenium							
Calcium	Lithium*	Silver					
Cesium*	Magnesium	Sodium					
Naturally Occurring Radionuclides Metals							
Uranium-233 + 234 Uranium-238 Radium-228							
Uranium-235 Radium-226							
Chemical Parameters/Physical Properties							
Ammonia	Oil and Grease	pН	Bulk Density				
Nitrate/Nitrite	Carbonate	Specific Conductance	Particle Size Distribution				
Total Organic Carbon							

^{*} Non-TAL metals

TABLE 2-2

LIST OF GROUP 1 ANALYTES: **SELECTED ORGANIC COMPOUNDS** (NEARBY SAMPLING SITE)

ORGANIC COMPOUNDS								
Target Compound List (Ser	nivolatiles)							
Phenol	bis(2-Chloroethoxy)methane	Acenaphthene	Fluoranthene					
bis(2-Chloroethyl)ether	2,4-Dichlorophenol	2,4-Dinitrophenol	Pyrene					
2-Chlorophenol	1,2,4-Trichlorobenzene	4-Nitrophenol	Butylbenzylphthalate					
1,3-Dichlorobenzene	Naphthalene	Dibenzofuran	3,3'-Dichlorobenzidine					
1,4-Dichlorobenzene	4-Chloroaniline	2,4-Dinitrotoluene	Benzo(a)anthacene					
Benzyl alcohol	Hexachlorobutadiene	Diethylphthalate	Chrysene					
1,2-Dichlorobenzene	4-Chloro-3-methylphenol (para-chloro-meta-cresol)	4-Chlorophenyl-phenyl ether	bis(2-Ethylhexyl)phthalate					
2-Methylphenol	2-Methylnaphthalene	Fluorene	Di-n-octylphthalate					
bis(2-Chloroisopropyl)ether	Hexachlorocyclopentadiene	4-Nitroaniline	Benzo(b)fluoranthene					
4-Methylphenol	2,4,6-Trichlorophenol	4,6-Dinitro-2- methylphenol	Benzo(k)fluoranthene					
N-Nitroso-di-n- propylamine	2,4,5-Trichlorophenol	N-nitrosodiphenylamine	Benzo(a)pyrene					
Hexachloroethane	2-Chloronapthalene	4-Bromophenyl- phenylether	Indeno(1,2,3-cd)pyrene					
Nitrobenzene	2-Nitroaniline	Hexachlorobenzene	Dibenz(a,h)anthracene					
Isophorone	Dimethylphthalate	Pentachlorophenol	Benzo(g,h,i)perylene					
2-Nitrophenol	Acenaphthylene	Phenanthrene	i					
2,4-Dimethylphenol	2,6-Dinitrotoluene	Anthracene	!					
Benzoic acid	3-Nitroaniline	Di-n-butylphthalate						
Target Compound List (Pes	sticides and PCBs)							
alpha-BHC	Endosulfan I	Methoxychlor	AROCLOR-1232					
beta-BHC	Dieldrin	Endrin Ketone	AROCLOR-1242					
delta-BHC	4,4'-DDE	alpha-Chlordane	AROCLOR-1248					
gamma-BHC (Lindane)	Endosulfan II	gamma-Chlordane	AROCLOR-1254					
Heptachlor	4,4'-DDD	Toxaphene	AROCLOR-1260					
Aldrin	Endosulfan Sulfate	AROCLOR-1016						
Heptachlor Epoxide	4,4'-DDT	AROCLOR-1221						

TABLE 2-3

LIST OF GROUP 2 ANALYTES: FALLOUT RADIONUCLIDES (REMOTE SAMPLING SITES)

Analytes

Anthropogenic Radionuclides

Americium-241

Cesium-134

Cesium-137

Plutonium-239 + 240

Strontium-89+90

Physical Parameters

Total Organic Carbon

Bulk Density

Particle Size Distribution

TABLE 2-4
SITE LOCATIONS FOR BSCP GROUP 1 ANALYTES

Site Code	Location Code	Site Description	Latitude* (Degrees North)	Longitude* (Degrees West)	Distance from 903 pad (km)
D1	SS105494	Drainage Soil	39.926	105.223	4.74
D2	SS105394	Drainage Soil	39.928	105.219	4.77
D3	SS105694	Drainage Soil	39.922	105.213	3.96
D4	SS106994	Drainage Soil	rainage Soil 39.923		3.83
D5	SS107094	Drainage Soil	39.926	105.203	4.15
D6	SS106294	Drainage Soil	39.919	105.185	3.62
P1	SS106794	Pediment Soil	39.920	105.226	4.30
P2	SS106894	Pediment Soil	39.917	105.230	4.15
P3	SS106594	Pediment Soil	39.934	105.227	5.66
P4	SS106394	Pediment Soil	39.938	105.229	6.17
P5	SS106494	Pediment Soil	39.939	105.227	6.15
P6	SS107194	Pediment Soil	39.927	105.192	4.29
P7	SS107294	Pediment Soil	39.923	105.193	3.90
V 1	SS106694	Valley/Hill-slope Soil	39.933	105.227	5.52
V2	SS105594	Valley/Hill-slope Soil	39.925	105.220	4.46
V3	SS105794	Valley/Hill-slope Soil	39.920	105.213	3.74
V4	SS105894	Valley/Hill-slope Soil	39.916	105.210	3.26
V5	SS105994	Valley/Hill-slope Soil	39.922	105.197	3.77
V6	SS106094	Valley/Hill-slope Soil	39.926	105.196	4.21
V 7	2255106194	Valley/Hill-slope Soil	39.920	105.190	3.58

^{*}Latitudes and longitudes corrected for NAD 1927 datum.

TABLE 2-5

SITE LOCATIONS FOR BSCP GROUP 2 ANALYTES

Site	Location	City Description				
Code	Code	one Description	Owner	Latitude	Longitudeb	Distance from
AF1:	SS110394	Air Force Academy N of Colonia and		(Degrees North)	(Degrees North) (Degrees West)	903 Pad (km)
AES	1010110	An Force Academy IN Of Colorado Springs	USAF	38.949	104.815	100 325
74.7	55110494	Air Force Academy N of Colorado Springs	USAF	38 077	104 620	107.000
AF3	SS110594	Air Force Academy N of Colorado Springs	USAF	20.020	104.029	106.090
BE1	SS107794	Beech Open Space N of Boulder	Boulder County	39.029	104.848	100.044
BE2	SS107694	Beech Open Space N of Boulder	Doubler County	40.088	105.277	23.143
BE3	SS107594	Beech Oren Space N of Bouldan	Boulder County	40.098	105.277	24.248
CMI	\$\$110694	Colorado Cobool of Mines West Co. 11	Boulder County	40.096	105.275	24.019
2	66110704	Colorado School of Milles, West of Golden	Colorado School of Mines	39.734	105.219	17 288
	33110194	Colorado School of Mines, West of Golden	Colorado School of Mines	39.737	105 220	16 056
CMD	55110894		Colorado School of Mines	39.740	105 223	16 670
CKI.	SS110294	Chatfield Reservoir Area SW of Denver	Colorado State Parks	20 527	105 000	10.0/0
DP1	SS109894	Daniels Park NW of Castle Rock	Danvar Mountain De-1-	37.330	105.090	40.247
DP2	SS109994	Daniels Park NW of Castle Rock	Demon Mountain Farks	39.480	104.920	51.285
DP3	SS110094	Daniels Park NW of Castle Boot	Denver Mountain Parks	39.485	104.921	50.662
DR1	\$\$104394	Divon Becaracir Ann West Cr.	Denver Mountain Parks	39.474	104.919	51.886
DR74	66104104	Dien in the service of the Collins	City of Fort Collins	40.549	105.142	73.484
ND2	10010103	Dixon Reservoir Area West of Fort Collins	City of Fort Collins	40.546	105.141	73 133
Car	55104294	Dixon Reservoir Area West of Fort Collins	City of Fort Collins	40 540	105 125	20,500
ESI.	SS108294	Eldorado Springs Area NW of Rocky Flats	Boulder City Parks	30 037	105.057	72.389
ES2	SS108394	Eldorado Springs Area NW of Rocky Flats	Bouldes City D. L.	39.931	105.257	7.400
ES3	SS108494	Eldorado Springs Area NW of Doctor, Elete	Doulder City Farks	39.942	105.260	7.995
FW1	SS109394	Foothills Water Treatment Done CW . C. D.	Boulder City Parks	39.947	105.260	8.373
FW2	\$\$109494	Footbille Water Teachers III and SW 01 Deliver	Denver Water Board	39.468	105.061	48.090
GM1.	\$\$108594	Green Mountain Dark West of D.	Denver Water Board	39.469	105.055	48.106
GM2	7-	Green Mountain Park Work of D.	City of Lakewood	39.705	105.180	20.451
GM3	Т	Green Mountain Dat. W. A. F.	City of Lakewood	39.699	105.170	21.125
IB1		Drivate Banch in Donn D. 1 W.	City of Lakewood	39.701	105.188	20.778
E	\top	Drivete Deach in Party Park West of Larkspur	Private Ranch (John Palk)	39.270	104.971	71.388
102	T	Tivate Ranch in Parry Park West of Larkspur	Private Ranch (John Palk)	39.271	104.971	71 239
	T	riivale Kanch in Parry Park West of Larkspur	Private Ranch (John Palk)	39.273	104.973	70 990
	T	Lon Hagier Keservoir Area SW of Loveland	Colorado State Parks	40.362	105 151	50 TOS
MIKI	7	Mesa Reservoir Trail N of Boulder	Boulder County Parks	40.071	105 286	21.700
MKZ		Mesa Reservoir Trail N of Boulder	Boulder County Parks	40.075	105 220	145.12
MR3	SS108194	Mesa Reservoir Trail N of Boulder	Boulder County Parks	20.04	103.270	21.834
			County County A Salas	40.072	105,264	21.188

Table 2-5. (continued).

Site	Location	Site Description	Owner	Latitude	Longitude	Distance from
Code	Code			(Degrees North)	9	903 Pad (km)
MW1	SS108894	Matthew Winters Park N of Morrison	Jefferson County	39.690	105.207	21.997
MW2	SS108994	Matthew Winters Park N of Morrison	Jefferson County	39.686	105.207	22.451
PP1	SS110194	Parry Pines Park S of Sedalia	Douglas County Parks	39.322	104.954	66.280
PR1	SS109594	Pinecliff Ranch S of Sedalia	Colorado Open Space (Private)	39.385	104.990	58.717
PR2	SS109694	Pinecliff Ranch S of Sedalia	Colorado Open Space (Private)	39.389	104.980	58.557
PR3	SS109794	Pinecliff Ranch S of Sedalia	Colorado Open Space (Private)	39.356	104.997	61.621
RM1	SS107394	Rabbit Mountain Open Space E of Lyons	Boulder County Parks	40.247	105.215	39.818
RM2	SS107494	Rabbit Mountain Open Space E of Lyons	Boulder County Parks	40.256	105.214	40.841
RM3	SS107894	Rabbit Mountain Open Space E of Lyons	Boulder County Parks	40.249	105.206	40.000
RR1	SS109094	Red Rocks Park N of Morrison	Denver Mountain Parks	39.655	105.199	25.889
RR2	SS109194	Red Rocks Park N of Morrison	Denver Mountain Parks	39.668	105.201	24.529
THI	SS104494	Taft Hill Road S of Fort Collins	City of Fort Collins	40.514	105.111	69.884
TH2	SS104594	Taft Hill Road S of Fort Collins	City of Fort Collins	40.512	105.107	69.713
TH3	SS105194	Taft Hill Road S of Fort Collins	City of Fort Collins	40.511	105.113	69.480
TM1	SS104694	Table Mountain Antennae Site N of Boulder	NOAA (Department of Commerce)	40.145	105.235	28.614
TM2	SS104794	Table Mountain Antennae Site N of Boulder	NOAA (Department of Commerce)	40.138	105.245	28.003
TM3*	SS104894	Table Mountain Antennae Site N of Boulder	NOAA (Department of Commerce)	40.125	105.248	26.621
TM4	SS104994	Table Mountain Antennae Site N of Boulder	NOAA (Department of Commerce)	40.141	105.252	28.379
TMS	SS105094	Table Mountain Antennae Site N of Boulder	NOAA (Department of Commerce)	40.130	105.233	26.962

^{*} Analyzed by TIMS for plutonium isotopic ratios b Latitudes and longitudes corrected for NAD 1927 datum.

TABLE 2-6
SAMPLE CONTAINERS AND HOLDING TIMES FOR SOIL SAMPLES

Parameter	Container	Holding Time (Days)
TAL metals plus Cs, Li, Mo, Sn, Sr	1 x 250 ml wide-mouth glass jar	180¹
TCL semivolatiles, pesticides, and PCBs	1 x 250 ml wide-mouth Teflon-lined jar	7 until extraction, 40 after extraction
Fallout and naturally occurring radionuclides	1 x 1 L wide-mouth glass jar	180
TOC, anions, pH, specific conductance and oil and grease	1 x 250 ml wide-mouth glass jar	28
Bulk density and particle-size distribution	1 gallon plastic jug	None

¹ Holding time for mercury is 28 days

This page intentionally left blank.

SECTION 2

FIGURES

This page intentionally left blank.

This page intentionally left blank.

PREPARED FOR
U.S. DEPARTMENT OF ENERGY
ROCKY FLATS ENVIRONMENTAL
TECHNOLOGY SITE, GOLDEN, COLORADO

FIGURE 2-4

ROCKY FLATS METHOD FOR SOIL SAMPLING: LOCATION AND SPACING

3.0 BSCP DATA: STATISTICAL SUMMARY OF ANALYTICAL RESULTS

Analytes sampled for the BSCP study were grouped based on collection regions. As detailed in Section 2, the regions were categorized as being either Group 1 (nearby) or Group 2 (remote). Group 1 analytes include metals, naturally occurring radionuclides, organic compounds, and additional supporting data measured in samples collected from 20 sampling locations in Boulder County Open Space, just north of RFETS (Section 3.1). Concentrations of the Group 1 analytes in three soil types (i.e., pediment, hillslope, and drainage-way soils) were compared using nonparametric ANOVA (Section 3.2). Group 2 analytes consist of fallout radionuclides (americium-241, cesium-134, cesium-137, plutonium-239+240, and strontium-89+90) and other supporting data measured in samples collected from 50 sampling locations along the Front Range (Section 3.3). In addition, 12 of the 50 samples collected for Group 2 were used to establish a regional baseline for the isotope ratios of plutonium-240/plutonium-239 and plutonium-241/plutonium-239, based on mass-spectroscopy analyses. Discussion of the plutonium isotope ratios and the isotopic data from this regional baseline study are presented in Section 3.4. Raw data for both Group 1 and Group 2 analytes are provided in Appendix B.

3.1 BSCP DATA: SUMMARY STATISTICS FOR GROUP 1 ANALYTES

Data for Metals, Naturally Occurring Radionuclides, and Supporting Parameters

For each analyte having a detect rate of greater than 20 percent, the type of distribution, the number of records, the non-detect rate (values below the IDL for that analyte), the minimum and maximum values, the 99/99 UTL, the mean, and the standard deviation were calculated (Tables 3-1 and 3-2). For analytes detected in less than 20 percent of the samples collected, only the minimum and maximum values are reported (Tables 3-1 and 3-2). A description of the statistical methods used for analysis of the data is provided in Section 2.5 of this report.

Analytes for which the non-detect rate is greater than 80 percent include antimony, cesium, molybdenum, silver, thallium, and tin. Because of the uncertainty associated with calculating statistical parameters for analytes that have a large percentage of the results reported as less than the IDL, it is recommended that — for such heavily censored data sets — the results of inferential statistics not be used for management or decision-making purposes (Helsel, 1990; Gilbert and Simpson, 1992)

Data for Organic Compounds

In addition to metals and naturally occurring radionuclides, Group 1 samples were also analyzed for certain organic compounds (see Table 2-2). Only two compounds — bis(2-ethylhexyl)phthalate and di-n-butyl phthalate — were detected. However, evaluation of the laboratory blanks associated with these samples indicated that the detected concentrations are due to laboratory contamination. Table 3-3 presents the observed results for the estimated values and the associated laboratory blanks.

3.2 COMPARISONS OF BSCP GROUP 1 ANALYTES BY SOIL TYPE

As stated in the Background Soils Characterization Plan (DOE, 1994), the concentrations of analytes in three different soil types (pediment, valley/hill-slope, and drainage-way soils) were compared using nonparametric ANOVA (Table 3-4). The comparison between the three soil types was intended to provide the data user with information concerning the possible differences in analyte concentrations that may occur depending on the soil type studied for a specific investigation. However, because only the top 5 cm of soil was sampled for the BSCP study, the results may not reflect the topographic influences that modify soil geochemistry. Such topographic influences are described as a soil "cantena" or "toposequence" (Birkeland, 1984).

Due to the small sample size for each soil type (n = 7 for pediment soils, n = 7 for valley/hill-slope soils, and n = 6 for drainage-way soils), the results of the ANOVA testing are tentative, at best. Only arsenic, lead, mercury, molybdenum, and radium-228 showed any statistically significant differences between the three soil types (Table 3-4), and high non-detect rates invalidate the results for some analytes. Because of the limited value of this comparison, the results are not discussed further in this report.

3.3 BSCP DATA: SUMMARY STATISTICS FOR GROUP 2 ANALYTES

Summary statistics were calculated for analytical data for the 50 samples collected from the remote (Group 2) sampling sites (Table 3-5). A single outlier for plutonium was not used to calculate the summary statistics, because this datum is believed to be the result of laboratory error. This single datum is 4.6 times higher than the maximum value measured for the other 49 samples (0.35 versus 0.076 pCi/g), and nearly 10 times higher than the mean activity measured for these other 49 samples (0.35 versus 0.035 pCi/g).

To confirm or refute this isolated high datum, the originating laboratory was requested to analyze another 3-gram aliquot size on the remaining raw soil sample (approximately 500 grams) for that location. This 3-gram aliquot and the corresponding laboratory replicate were determined to have activity levels of 0.029 and 0.025 pCi/g, respectively. In addition, when an aliquot from a duplicate field sample was similarly analyzed, the results for the duplicate aliquot and its replicate were 0.032 and 0.031 pCi/g, respectively. Although the original sample aliquot for that location may have contained sufficient plutonium to exhibit an activity of 0.35 pCi/g (hot-particle theory), the remoteness of the sample and the analytical results for the two additional aliquots indicate that the outlier is more likely due to laboratory error rather than to elevated plutonium levels in the environment. The outlier datum, however, remains in RFEDS because there is no protocol to eliminate the record, which has been validated.

3.4 GROUP 2 SAMPLES: PLUTONIUM ISOTOPE RATIOS

Twelve of the 50 Group 2 samples were randomly selected for analysis by TIMS, in order to measure the plutonium-240/plutonium-239 ratio. A subset of four of these twelve samples was also analyzed by TIMS for the plutonium-241/plutonium-239 ratio.

The TIMS analyses was contracted to LANL; however, to be cost-effective, the twelve samples were prepared by the primary lab contractor for radionuclide analysis (Thermal Analytical Inc.), but the standard procedure was somewhat modified, with respect to aliquot size. Normally, in accordance with GRRASP, 3-gram aliquots of soil are completely dissolved and prepared for alpha-spectroscopy by electroplating the recovered plutonium onto stainless-steel planchettes. However, because of the low levels of plutonium that were expected in these background samples, the larger aliquot size was deemed necessary by the principal investigator at LANL to ensure there was sufficient plutonium for the TIMS analysis. The principal investigator at LANL also requested that a specific plutonium tracer be used for the preparation of the TIMS samples instead of the tracer normally used by Thermal Analytical Inc. for 3-gram samples.

The primary objective of preparing the 10-gram aliquot samples was to provide enough plutonium on the planchette for TIMS analyses; however, the plutonium activities measured from the 3-gram aliquots and the 10-gram aliquots for the same locations are not directly comparable. An error analysis based on aliquot size differences and the use of different tracers is beyond the scope of this report.

Sampling locations for the twelve samples selected for determination of plutonium isotope ratios are shown on Figure 2-2; Table 3-6 presents the results of the TIMS analysis for plutonium isotope ratios. A complete description of the TIMS analysis is included in Appendix A.

This page intentionally left blank.

SECTION 3

TABLES

This page intentionally left blank.

TABLE 3-1

SUMMARY STATISTICS FOR BSCP GROUP 1 ANALYTES: METALS AND NATURALLY OCCURRING RADIONUCLIDES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation	Tol Fact	99/99 UTL*	Units
Aluminum	Normal	20	0	4050	17100	10244	3329	3.8316	22999	mg/kg
Antimony	х	20	96	.19U	0.47	Х	Х	3.8316	х	mg/kg
Arsenic	Normal	20	0	2.3	9.6	6.09	2	3.8316	13.75	mg/kg
Barium	Normal	20	0	45.7	134	102.4	19.43	3.8316	176	mg/kg
Beryllium	Normal	20	0	0.24	0.9	0.66	0.153	3.8316	1.25	mg/kg
Cadmium	Nonparam	20	39	.295U	2.3	0.714	0.449	3.8316	2.335	mg/kg
Calcium	Normal	20	0	1450	4550	2969	749	3.8316	5839	mg/kg
Cesium	Х	20	100	6.05U	7 U	Х	Х	3.8316	Х	mg/kg
Chromium	Normal	20	0	5.5	16.9	11.29	2.85	3.8316	22.21	mg/kg
Cobalt	Normal	20	0	3.4	11.2	7.29	1.81	3.8316	14.22	mg/kg
Copper	Nonparam	20	0	5.2	15.85	12.94	2.56	3.8316	22.75	mg/kg
Iron	Normal	20	0	7390	18100	12549	2744	3.8316	23063	mg/kg
Lead	Normal	20	0	8.6	53.3	33.6	10.51	3.8316	73.87	mg/kg
Lithium	Lognormal	20	0	4.8	11.6	7.69	1.93	3.8316	15.08	mg/kg
Magnesium	Lognormal	20	0	1310	2800	1913.1	468.1	3.8316	3707	mg/kg
Manganese	Normal	20	0	129	357	237.3	63.89	3.8316	482.1	mg/kg
Mercury	Lognormal	20	65	.04U	0.12	0.072	0.031	3.8316	0.191	mg/kg
Molybdenum	Х	20	91	. 29 U	0.9U	х	Х	3.8316	x	mg/kg
Nickel	Normal	20	0	3.8	14	9.63	2.64	3.8316	19.74	mg/kg
Potassium	Normal	20	0	1110	2830	2061.2	453	3.8316	3797	mg/kg
Selenium	Nonparam	20	39	. 29 U	1.4	0.634	0.295	3.8316	1.76	mg/kg
Silicon	Normal	20	0	934	1650	1383.5	179	3.8316	2069	mg/kg
Silver	Х	20	100	.19U	.22U	Х	Х	3.8316	х	mg/kg
Sodium	Lognormal	20	0	43.8	105	62.16	14.84	3.8316	119.02	mg/kg
Strontium	Lognormal	20	0	9.6	45.2	28.44	10.25	3.8316	67.92	mg/kg
Thallium	х	14*	100	.385U	.445U	Х	Х	4.2224	х	mg/kg
Tin	X	20	91	1.35U	2.9	х	X	3.8316	х	mg/kg
Vanadium	Normal	20	0	10.8	45.8	27.85	8.87	3.8316	61.84	mg/kg
Zinc	Normal	20	0	21.1	75.9	49.56	12.1	3.8316	95.92	mg/kg
Radium-226	Lognormal	20	0	0.1	0.805	0.619	0.153	3.8316	1.20	pCi/g
Radium-228	Normal	20	0	0.2	2.3	1.35	0.48	3.8316	3.189	pCi/g
Uranium-233/234	Lognormal	20	0	0.6	3.1	1.097	0.578	3.8316	3.31	pCi/g
Uranium-235	Lognormal	20	0	0.11	0.34	0.0539	0.02	3.8316	0.13	pCi/g
Uranium-238	Lognormal	20	0	0.74	2.6	1.09	0.455	3.8316	2.83	pCi/g

a = All UTLs calculated assuming a normal distribution.

Min and Max values: lowest/highest detected value or, if no detected values, 1/2 IDL followed by U. Uranium-238 had 2 outliers removed for calculation of UTL; outliers retained for summary statistics.

X = Not applicable because > 80% of data were non-detects.

[%] Non-detects are calculated from all accepted valid data except equipment rinsates.

^{*} Six thallium samples were rejected during the validation process.

TABLE 3-2

SUMMARY STATISTICS FOR BSCP GROUP 1 ANALYTES: SUPPORTING DATA TYPES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	99/99 UTL	Mean	Standard Deviation	Units
Ammonia	Normal*	20	39	0.5U	7	NC	2.0333	1.8977	mg/kg
Carbonate	Normal*	20	100	5U	5.5U	NC	X	X	mg/kg
Nitrate/Nitrite	Normal*	20	0	2	7	NC	4	1.6859	mg/kg
Oil & Grease	Normal*	20	0	52	130	NC	94.575	19.325	mg/kg
pН	Normal*	20	NA	6	6.8	NC	6.3575	0.2424	pН
Specific Cond.	Normal*	20	NA	0.1	0.53	NC	0.2083	0.0896	mmhos/cm
TOC	Normal*	20	0	4920	17600	NC	16133	2696.9	mg/kg
% Clay	Normal*	20	0	7	36	NC	20.45	8.62	%
% Sand	Normal*	20	0	22	76	NC	43.93	15.27	%
% Silt	Normal*	20	0	18	45.5	NC	35.76	7.52	%
Bulk Density	Normal*	20	0	0.9	1.2	NC	0.923	0.07	g/cm³

Normal* : Distribution assumed to be normal for summary statistics of supporting data

NC = Not calculated

TOC = Total Organic Carbon

Min and Max Values: lowest/highest value detected if no detached values, 1/2 IDL followed by U.

X = Not applicable because greater than 80% were non-detects.

TABLE 3-3

BSCP SEMIVOLATILE ORGANIC COMPOUNDS: ESTIMATED VALUES vs ASSOCIATED LABORATORY BLANK

Chemical Name	Site	Location	Sample #	Type	Qual	Result	Unit
Bis(2-ethylhexyl)phthalate	V3	SS105794	SS00109EG	REAL	J	75	μg/kg
Bis(2-ethylhexyl)phthalate	P4	SS106394	SS00115EG	REAL	J	91	μg/kg
Di-n-butyl phthalate	P7	SS107294	SS00125EG	REAL	J	160	μg/kg
Bis (2-ethylhexyl)phthalate	T	Lab Blank	SBLK1	BLK		660	μg/kg
Di-n-butyl phthalate	1 - 1	Lab Blank	SBLK2	BLK	_	110	μg/kg

Note that each value for sites V3, P4, and P7 is less than 10X the laboratory blank samples.

TABLE 3-4

GROUP 1 ANALYTES: NONPARAMETRIC ANOVA BY SOIL TYPE

Element	Comparison	Kruskal-Wallis Stat	Significance	Different?
	Drainage - Pediment	0.5116	0.4744	no
Aluminum	Pediment - Valley Slopes	0.0367	0.8480	no
	Drainage - Valley Slopes	2.4760	0.1156	no
	Drainage - Pediment	0.4155	0.5192	no
Antimony	Pediment - Valley Slopes	0.0000	1.0000	no
	Drainage - Valley Slopes	0.8646	0.3524	no
	Drainage - Pediment	9.0000	0.0027	yes
Arsenic	Pediment - Valley Slopes	5.6001	0.0180	yes
u.	Drainage - Valley Slopes	7.3876	0.0066	yes
	Drainage - Pediment	0.3274	0.5672	no
Barium	Pediment - Valley Slopes	0.2009	0.6540	no
	Drainage - Valley Slopes	0.8670	0.3518	no
	Drainage - Pediment	1.1511	0.2833	no
Beryllium	Pediment - Valley Slopes	0.2618	0.6080	no
	Drainage - Valley Slopes	1.0000	0.3173	no
	Drainage - Pediment	4.0110	0.0452	no
Cadmium	Pediment - Valley Slopes	0.0370	0.8475	no
	Drainage - Valley Slopes	2.9550	0.0856	no
	Drainage - Pediment	0.0816	0.7751	no
Calcium	Pediment - Valley Slopes	0.6898	0.4062	no
	Drainage - Valley Slopes	0.1837	0.6682	no
	Drainage - Pediment	0.8670	0.3518	no
Cesium	Pediment - Valley Slopes	2.4147	0.1202	no
	Drainage - Valley Slopes	0.0835	0.7727	no
	Drainage - Pediment	2.2562	0.1331	no
Chromium	Pediment - Valley Slopes	0.0041	0.9491	no
	Drainage - Valley Slopes	1.8469	0.1741	no
	Drainage - Pediment	0.3265	0.5677	no
Cobalt	Pediment - Valley Slopes	0.0164	0.8982	no
	Drainage - Valley Slopes	0.5102	0.4751	no
	Drainage - Pediment	3.7296	0.0535	no
Copper	Pediment - Valley Slopes	0.2009	0.6540	no
	Drainage - Valley Slopes	1.0055	0.3160	no
	Drainage - Pediment	2.0408	0.1531	no
Iron	Pediment - Valley Slopes	0.2000	0.6547	no
	Drainage - Valley Slopes	1.6531	0.1985	no
	Drainage - Pediment	9.0000	0.0027	yes
Lead	Pediment - Valley Slopes	2.3562	0.1248	no
	Drainage - Valley Slopes	4.9166	0.0266	yes

Table 3-4. (continued).

Element	Comparison	Kruskal-Wallis Stat	Significance	Different?
	Drainage - Pediment	0.6190	0.4314	no
Lithium	Pediment - Valley Slopes	0.0164	0.8982	no
	Drainage - Valley Slopes	0.1837	0.6682	no
	Drainage - Pediment	0.0204	0.8864	no
Magnesium	Pediment - Valley Slopes	0.2000	0.6547	no
	Drainage - Valley Slopes	0.3265	0.5677	no
	Drainage - Pediment	1.6531	0.1985	no
Manganese	Pediment - Valley Slopes	1.1796	0.2774	no
	Drainage - Valley Slopes	0.0204	0.8864	no
	Drainage - Pediment	4.0670	0.0437	yes
Mercury	Pediment - Valley Slopes	3.0153	0.0825	no
	Drainage - Valley Slopes	0.0490	0.8248	no
	Drainage - Pediment	1.3243	0.2498	no
Molybdenum	Pediment - Valley Slopes	4.2073	0.0402	yes
	Drainage - Valley Slopes	0.1862	0.6661	no
	Drainage - Pediment	0.3265	0.5677	no
Nickel	Pediment - Valley Slopes	0.0041	0.9491	no
	Drainage - Valley Slopes	0.5102	0.4751	no
	Drainage - Pediment	0.1837	0.6682	no
Potassium	Pediment - Valley Slopes	0.0367	0.8480	no
	Drainage - Valley Slopes	0.7347	0.3914	no
	Drainage - Pediment	1.0055	0.3160	no
Selenium	Pediment - Valley Slopes	0.9184	0.3379	no
	Drainage - Valley Slopes	0.0204	0.8864	no
	Drainage - Pediment	0.0051	0.9430	no
Silicon	Pediment - Valley Slopes	0.0041	0.9491	no
	Drainage - Valley Slopes	0.0051	0.9430	no
	Drainage - Pediment	0.7554	0.3848	no
Silver	Pediment - Valley Slopes	1.2569	0.2622	no
	Drainage - Valley Slopes	0.0487	0.8253	no
	Drainage - Pediment	0.0204	0.8864	no
Sodium	Pediment - Valley Slopes	0.4939	0.4822	no
	Drainage - Valley Slopes	0.5102	0.4751	no
	Drainage - Pediment	0.0816	0.7751	no
Strontium	Pediment - Valley Slopes	0.1020	0.7494	no
	Drainage - Valley Slopes	0.0204	0.8864	no
	Drainage - Pediment	0.7412	0.3893	no
Thallium	Pediment - Valley Slopes	3.3041	0.0691	no
	Drainage - Valley Slopes	0.0760	0.7827	no
	Drainage - Pediment	0.0819	0.7748	no
Tin	Pediment - Valley Slopes	0.1025	0.7489	no
	Drainage - Valley Slopes	0.0206	0.8859	no

Table 3-4. (continued).

Element	Comparison	Kruskal-Wallis Stat	Significance	Different?
	Drainage - Pediment	1.3061	0.2531	no
Vanadium	Pediment - Valley Slopes	0.0041	0.9491	no
! !	Drainage - Valley Slopes	2.0408	0.1531	no
	Drainage - Pediment	0.3265	0.5677	no
Zinc	Pediment - Valley Slopes	0.2618	0.6089	no
	Drainage - Valley Slopes	0.0000	1.0000	no
	Drainage - Pediment	2.0464	0.1526	no
Radium-226	Pediment - Valley Slopes	3.6979	0.0545	no
Nadium-220	Drainage - Valley Slopes	0.0819	0.7748	no
	Drainage - Pediment	2.2624	0.1325	no
Radium-228	Pediment - Valley Slopes	4.7814	0.0288	yes
	Drainage - Valley Slopes	0.0210	0.8847	no
	Drainage - Pediment	0.4249	0.5145	no
Uranium-233/234	Pediment - Valley Slopes	2.3771	0.1231	no
	Drainage - Valley Slopes	2.7064	0.0999	no
	Drainage - Pediment	2.2624	0.1325	no
Uranium-235	Pediment - Valley Slopes	0.4100	0.5220	no
	Drainage - Valley Slopes	3.4490	0.0633	no
	Drainage - Pediment	0.0210	0.8847	no
Uranium-238	Pediment - Valley Slopes	3.0086	0.0828	no
	Drainage - Valley Slopes	2.0464	0.1526	no
	Drainage - Pediment	0.1949	0.6589	no
Ammonia	Pediment - Valley Slopes	0.4370	0.5086	no
	Drainage - Valley Slopes	0.0217	0.8828	no
	Drainage - Pediment	0.0000	1.0000	no
Carbonate	Pediment - Valley Slopes	0.7619	0.3827	no
	Drainage - Valley Slopes	0.5786	0.4469	no
	Drainage - Pediment	0.3680	0.5441	no
Nitrate/Nitrite	Pediment - Valley Slopes	0.2182	0.6404	no
	Drainage - Valley Slopes	0.1910	0.6621	no
	Drainage - Pediment	0.6259	0.4288	no
Oil & Grease	Pediment - Valley Slopes	0.1034	0.7478	no
	Drainage - Valley Slopes	0.3283	0.5666	no
	Drainage - Pediment	0.6648	0.4149	no
pН	Pediment - Valley Slopes	0.1555	0.6934	no
	Drainage - Valley Slopes	0.1301	0.7184	no
	Drainage - Pediment	0.5130	0.4738	no
Specific Conductivity	Pediment - Valley Slopes	0.0371	0.8473	no
	Drainage - Valley Slopes	0.8767	0.3491	no
	Drainage - Pediment	0.0207	0.8856	no
Total Organic Carbon	Pediment - Valley Slopes	1.7156	0.1903	no
	Drainage - Valley Slopes	0.1290	0.7195	no

Table 3-4. (continued).

Element	Comparison	Kruskal-Wallis Stat	Significance	Different?
	Drainage - Pediment	1.3133	0.2518	no
% Clay	Pediment - Valley Slopes	2.1735	0.1404	no
	Drainage - Valley Slopes	0.0823	0.7742	no
	Drainage - Pediment	0.5116	0.4744	no
% Sand	Pediment - Valley Slopes	1.4865	0.2228	no
	Drainage - Valley Slopes	0.0000	1.0000	no
	Drainage - Pediment	0.0052	0.9426	no
% Silt	Pediment - Valley Slopes	0.2641	0.6073	no
	Drainage - Valley Slopes	0.0051	0.9428	no
	Drainage - Pediment	2.5278	0.1119	no
Max Bulk Density	Pediment - Valley Slopes	0.0000	1.0000	no
	Drainage - Valley Slopes	2.5278	0.1129	no

TABLE 3-5

SUMMARY STATISTICS FOR BSCP GROUP 2 ANALYTES: FALLOUT RADIONUCLIDES AND SUPPORTING DATA

Analyte	Distri- bution	Count (n)	% Non- Detect	Min	Max	Tol Fact	99/99 UTL	Mean	S.D.	Units
Fallout Radionuclides						·	- : *·#		<u> </u>	
Americium-241	Nonparam	50	0	0.001	0.025	3.1369	0.037	0.0107	0.006	pCi/g
Cesium-134	Nonparam	50	0	0.05	0.3	3.1369	0.369	0.2	0.056	pCi/g
Cesium-137	Lognormal	50	0	0.3	1.7	3.1369	2.25	0.941	0.372	pCi/g
Plutonium-239/240	Lognormal	50	0	0.017	0.072	3.1369	0.084	0.038	0.014	pCi/g
Strontium-89/90	Lognormal	50	0	0.065	0.64	3.1369	0.708	0.254	0.128	pCi/g
Supporting Data	<u></u>		· · · · · · · · · · · · · · · · · · ·			<u>'</u>		<u> </u>	<u> </u>	
% Clay	Normal*	50	0	1	34	X	X	11.58	6.37	%
% Sand	Normal*	50	0	24	78	X	X	53.29	11.97	%
% Silt	Normal*	50	0	20	51	Х	X	35.21	7.49	%
Soil density	Normal*	50	0	0.8	1.2	Х	X	0.944	0.78	g/cm ³
Total Organic Carbon	Normal*	50	0	1.4	6.05	Х	X	3.66	1.24	%

X = Not calculated or not applicable

Normal*: Distribution assumed normal for summary statistics of supporting data

S.D. = standard deviation

TABLE 3-6 $$^{240}\text{Pu}/^{239}\text{Pu}$$ and ${}^{241}\text{Pu}/^{239}\text{Pu}$$ ISOTOPE RATIOS

Site	Location	Sample Number	²⁴⁰ Pu/ ²³⁹ Pu	Standard Deviation	²⁴¹ Pu/ ²³⁹ Pu	Standard Deviation	Units
TM3	SS104894	SS00099EG	0.14	0.008	not analyzed	X	pCi/g
PR1	SS109594	SS00149EG	0.143	0.006	0.003	0.0002	pCi/g
GM1	SS108594	SS00138EG	0.148	0.007	0.003	0.0005	pCi/g
ES1	SS108294	SS00135EG	0.151	0.002	0.0033	0.0006	pCi/g
BE1	SS107794	SS00130EG	0.153	0.004	not analyzed	X	pCi/g
TH3	SS105194	SS00102EG	0.154	0.011	not analyzed	X	pCi/g
DP1	SS109894	SS00152EG	0.155	0.004	0.0028	0.0015	pCi/g
AF1	SS110394	SS00157EG	0.156	0.026	not analyzed	X	pCi/g
LH1	SS105294	SS00104EG	0.16	0.005	not analyzed	X	pCi/g
CR1	SS110294	SS00156EG	0.163	0.035	not analyzed	X	pCi/g
DR2	SS104194	SS00091EG	0.169	0.004	not analyzed	X	pCi/g
MW1	SS108894	SS00141EG	0.17	0.003	not analyzed	X	pCi/g

 240 Pu/ 239 Pu Ratio Overall Mean and Standard Deviation = 0.1552 \pm 0.0093

 $$^{241}\text{Pu}/^{239}\text{Pu}$$ Ratio Overall Mean and Standard Deviation = 0.0030 \pm 0.0002

X = Not applicable because the ²⁴¹Pu/²³⁹Pu ratio was not determined.

4.0 DISCUSSION OF ANALYTICAL RESULTS FOR BSCP AND ROCK CREEK SAMPLES

The BSCP and Rock Creek data for metals and naturally occurring radionuclides were compared using the statistical methods described in Section 2.5 of this report. Tables 3-1 and 3-3 present summary statistics for the BSCP data; Tables 4-1 and 4-2 present the summary statistics for the Rock Creek data. Statistical comparisons of Rock Creek and BSCP data were performed for those analytes with greater than 20 percent detects. For analytes with less than 20 percent detects, data are summarized in Table 4-3. Results of various statistical tests comparing the BSCP and Rock Creek data are presented in Table 4-4. Data for each of the Group 1 analytes were compared with data from other studies; Figures 4-1 through 4-34 summarize these data comparisons. Box-and-whisker plots of BSCP, Rock Creek, and combined data are presented in Appendix D.

Statistical comparisons of the BSCP and Rock Creek data were also performed for all fallout radionuclides, following the methodology outlined in Section 2.5 of this report. Summary statistics for the Rock Creek data (Table 4-5), the BSCP data (Table 3-5), and the results of the comparison of the Rock Creek and BSCP data sets (Table 4-6), are provided in Sections 3 and 4 of this report. Data for each of the Group 2 analytes were compared with data from other studies; Figures 4-35 through 4-39 summarize these data comparisons.

As discussed in Section 2.5 of this report, statistics for those records qualified as non-detects (i.e., U qualified) were calculated by replacing the non-detect with one-half the value given in the result field of the RFEDS data for metal analytes. For metals, this value is assumed to be the IDL, whereas the reporting-limit field of RFEDS data may contain either the CRDL, the MDL, or the IDL value. Therefore, the mean concentrations (and other statistics) reported here may be different than those derived from calculations made following a different treatment for non-detects. Regardless of how non-detects are treated, however, the most important aspect is to treat comparison data sets in the same manner. In addition, any statistical comparisons using any data set with greater than 80-percent non-detects are problematic, at best; test results for data sets with 50- to 80-percent non-detects should be reviewed carefully.

4.1 GROUP 1 ANALYTES: METALS

The metals described here are naturally occurring in the crustal rocks of the earth. Various fractionation processes may result in a relative depletion or enrichment of a metal in a given rock type. Also, since the inception of the Industrial Revolution, anthropogenic redistribution of metals and their subsequent dissemination into the environment has radically altered the background levels of certain metals in surficial soils. Salomons and Forstner (1984) compiled data and calculated the ratio of anthropogenic:natural emissions of metals to calculate an index for the "mobilization factor" for metals, with higher values indicating relatively higher anthropogenic mobilities. The mobilization factors are: lead = 100, silver = 83, molybdenum = 45, antimony = 39, zinc = 23, cadmium = 19, copper = 13, tin = 8.3, selenium = 4.7, nickel = 3.5, arsenic = 3.3, vanadium = 3.2, and chromium = 1.6.

The trace metal content of soils and sediments is also strongly reflective of the effects of grain size, and this should be taken into account during comparisons of the analytical results for different samples (Salomons and Forstner, 1984). Data for BSCP Phase I samples include the results of grain-size analysis; however, particle-size distributions may not have been determined for samples from other sampling programs. The age of the soil and the residence time of different elements may also account for some of the compositional variability between different soils. Calcium, cadmium, magnesium, and sodium are readily leachable (75-380 year residence), whereas arsenic, copper, lead, mercury, nickel, selenium, and zinc have residence times on the order of 1,000 to 3,000 years in temperate soils (Salomons and Forstner, 1984).

To provide a better understanding of the meaning of the analytical results for the BSCP and Rock Creek studies, the following discussion briefly summarizes essential information for each metal. Data from several sources are included to help the reader put the results of the BSCP and Rock Creek studies into a larger, overall perspective. The caveat to this comparison with other studies is that all metals analyses performed for RFETS solid samples use the CLP method, stipulated by EPA. The CLP method utilizes nitric acid and hydrogen peroxide or a hydrochloric and nitric acid mixture for dissolution of samples. Non-RFETS studies, however, may use a hydrofluoric acid digestion, which is necessary to completely dissolve siliceous phases (mainly quartz and feldspars) in each soil sample. Alternatively, the recent Front Range study by the USGS (Severson and Tourtelot, 1994) used other analytical methods, including optical emission spectroscopy (OES), x-ray fluorescence (XRF), atomic absorption spectroscopy (AAS), ion-selective electrode, and gasometric procedures.

Mineralogical Associations of Metals

Although silica polymorphs are generally quite pure (Drees et al., 1989), feldspars may contain a variety of impurities. Feldspars are anhydrous alumino-silicates that contain varying amounts of sodium, potassium, and calcium in several solid-solution series. Minor or trace elements include strontium, cesium, barium, lithium, magnesium, lead, iron, and chromium (Huang, 1989). These impurities are incorporated into the feldspar crystal lattice at the time of magmatic crystallization. Unlike the surface adsorption of potential contaminants added to the soil, these ions in the crystal lattice may not be released by a nitric and hydrochloric acid digestion, because the mineral may only be partially digested. The significance of an incomplete digestion of feldspars is that, for some metals, concentrations reported for RFETS soil samples may be less than those reported for other studies, such as the recent USGS study (Severson and Tourtelot, 1994). Aluminum in soils may also occur as amorphous to crystalline hydroxide/oxyhydroxide minerals, which should dissolve in a nitric and hydrochloric acid digestion, along with all adsorbed metals.

Acknowledging the analytical limitations, the comparison of RFETS data for background soils with those from other studies still provides useful information for many metals. For alkaline and alkaline-earth metals — as well as aluminum, silicon, beryllium, and chromium — results for RFETS samples may be less than those for samples digested by hydrofluoric acid. To better quantify the associations of various metals, correlation coefficients were calculated for all metals against silicon, aluminum, iron, and manganese (Table 4-8). Metals of concern that are not

closely associated (i.e., r values less than 0.50) with aluminum or silicon include arsenic, cadmium, lead, manganese, mercury, and selenium. Metals of concern that show a high correlation (r values greater than 0.80) with aluminum or silicon include beryllium, chromium, copper, nickel, and zinc. Antimony, cesium, molybdenum, silver, and tin have too low a detection rate to provide meaningful correlation values. However, as noted by Salomons and Forstner (1984), both antimony and cobalt tend to be associated with manganese. In this analysis, antimony (4 percent detects), cobalt (100 percent detects), and molybdenum (9 percent detects) show the highest correlations of all the manganese correlations (r = 0.62, 0.65, and 0.62, respectively).

The strength of the metal correlation with aluminum and silicon gives an indication of whether the metal is likely to be completely or partially extracted from the soil sample. For those metals with a strong correlation (i.e., a high r-value) with aluminum or silicon, the mean and range of concentrations reported in this study are likely to be less than those reported in the Front Range study conducted by the USGS. However, the results from the BSCP study are directly comparable with results from all RFETS studies that follow the same sampling and anlysis protocols. Due to the possibility of incomplete digestions following CLP methodology, results for some analytes may be less than those reported for other studies that use an HF acid digestion of the sample or XRF analysis. Aside from conducting a separate study to determine the exact extent of these differences, the correlation coefficients presented in Table 4-8 provide a rough estimate of which metals may be contained within the incompletely digested alumino-silicate phases.

Aluminum

Aluminum is the third-most abundant element in the earth's crust and comprises a significant proportion of many common rock-forming minerals (Krauskopf, 1979). Clays, micas, feldspars, and other alumino-silicate minerals contain the trivalent aluminum ion. Weathering reactions of rock-forming minerals can produce amorphous aluminum silicates, including allophane, halloysite, and others (Hsu, 1989). Gibbsite, Al(OH)₃, is the common hydroxide phase in soils, although oxyhydroxides (e.g., boehmite and diaspore) may also be present (Hsu, 1989).

Due to the incomplete digestion of alumino-silicate minerals, the ranges and means of aluminum concentrations for the BSCP and Rock Creek studies are less than those reported for the Front Range study (Severson and Tourtelot, 1994). The mean values for the BSCP (10,244 mg/kg) and Rock Creek (12,993 mg/kg) are approximately one-fifth the value of the mean for the Front Range study (56,600 mg/kg). The highest correlations with aluminum are shown for chromium (r = 0.96), potassium (r = 0.91), beryllium (r = 0.90), and vanadium (r = 0.90) (see Table 4-8).

Results of parametric ANOVA show that there are statistically significant differences between the means of the BSCP and Rock Creek data sets, with the Rock Creek mean (12,993 mg/kg) greater than the BSCP mean (10,244 mg/kg). However, the ranges of concentration for both of these data sets are within the range of concentrations reported from other published studies

(see Severson and Tourtelot, 1994; Shacklette and Boerngen, 1984). Also, review of the graphics (scatterplots, box-and-whisker plots, probability plots) shows little real difference between the two RFETS data sets.

Because neither the Rock Creek nor the BSCP data lie outside of the range of published values for aluminum in background soils, and because the graphics show little difference between the sample populations, both data sets are considered representative of background levels for aluminum in surficial soils near RFETS, as analyzed using CLP methods.

Antimony

Antimony is present in low concentrations in the earth's crust (crustal average = 0.2 mg/kg), although it is much more abundant in shales and claystones (mean = 1.5 mg/kg) than in other rock types (Krauskopf, 1979). Typically, shales (especially marine shales) contain larger amounts of trace elements than other rock types (Severson and Tourtelot, 1994). The claystones that comprise the bedrock at RFETS may, therefore, be expected to contain some trace elements at concentrations significantly higher than the crustal mean. In addition, trace elements (such as antimony, arsenic, and cadmium) volatilized during smelting and other industrial activities, may be strongly enriched in surface soils due to atmospheric deposition (Salomons and Forstner, 1984).

Nevertheless, both the BSCP and Rock Creek data sets have high non-detect rates for antimony; the non-detect rates are 95 percent and 100 percent, respectively. The high non-detect rate for the BSCP samples occurred despite the use of trace-analyzer method with a lower detection limit than the standard atomic absorption (flame) method. EPA had requested the special method to achieve a lower IDL for antimony. Using this improved method, one BSCP sample contained concentrations of antimony greater than the IDL; no samples contained antimony in concentrations above the IDL for the Rock Creek site.

The lack of detected concentrations for antimony precludes the use of statistical comparisons between the BSCP and Rock Creek data sets. However, this lack corroborates the results of the Front Range study, which determined a low detection rate and much uncertainty for antimony analyses (Severson and Tourtelot, 1994). Additionally, the graphical illustrations of antimony data from the BSCP and Rock Creek studies (see Figure 4-2) largely illustrate the differing reporting limits for the two analytical methods used.

Both the Rock Creek and BSCP data sets are considered to represent background levels for antimony in surficial soils. Future comparisons using the BSCP data must take into account the low detection limits that resulted from using a more sensitive analytical method for the BSCP samples. Specifically, two data sets censored at vastly different detection limits should not be compared using the standard replacement of one-half the detection limits for non-detects.

Arsenic

Severson and Tourtelot (1994) found no trends in the distribution of arsenic in surficial soils along the Front Range. However, they did note that arsenic was expected "...to be associated with marine shales." The baseline range of arsenic in Front Range soils was reported as 0.6 mg/kg to 22 mg/kg (Severson and Tourtelot, 1994). Krauskopf (1979) notes that, on average, arsenic concentrations are enriched in shales (10 mg/kg), when compared to the crustal mean (1.8 mg/kg). Other studies report similar mean values for the enrichment of arsenic in shales and clays (14.5 mg/L — Woolson, 1983; 13 mg/kg — Salomons and Forstner, 1984).

Arsenic concentrations in soil samples from the BSCP and Rock Creek are not significantly different, according to the results from parametric ANOVA. The arsenic concentrations measured for the BSCP and Rock Creek are well within the published range of background values for the Front Range Corridor and other neighboring regions (Severson and Tourtelot, 1994; Shacklette and Boerngen, 1984; Dragun, 1988). Of the four metals tested for correlations with arsenic, none show good correlations; the ones most closely correlated are iron (r = 0.50) and manganese (r = 0.48) in the BSCP study (see Table 4-8). The lack of a good correlation with aluminum (r = 0.33) and silicon (r = 0.13) suggests that the results for arsenic should reflect the total amount of arsenic in the soils, and that the results of this study should be comparable with those of the Front Range study.

Because arsenic concentrations in both BSCP and Rock Creek soils are not statistically different, and because the results for both BSCP and Rock Creek lie within the range of values reported for other studies, both data sets are considered representative of background concentrations of arsenic in surficial soils near RFETS.

Barium

Barium is the fourteenth-most abundant element in the earth's crust and is an alkaline-earth metal with geochemical behavior similar to that of strontium, calcium, and magnesium. Barium is enriched in granites (mean = 700 mg/kg) and shales (mean = 600 mg/kg), relative to the mean crustal concentration (500 mg/kg) (Krauskopf, 1979). In surficial soils along the Front Range Corridor, baseline barium concentrations range from 450 to 1,800 mg/kg (Severson and Tourtelot, 1994).

The solubility of barite (BaSO₄, a fairly common mineral) probably controls the concentration of barium in many natural waters (Hem, 1992), including groundwater from the upper hydrostratigraphic unit (UHSU) at RFETS (EG&G, 1995d). Barium is less common than magnesium, calcium, or strontium in carbonate rocks; barium ions have a slightly larger radius than strontium ions and cannot as readily fit into the crystal lattice of calcite (Hem, 1992).

Results from the application of nonparametric ANOVA indicate that there are statistically significant differences in the mean values of the BSCP and Rock Creek data sets (means = 102 mg/kg and 195 mg/kg, respectively). However, the mean concentrations of barium in both the

BSCP and Rock Creek samples are well below the mean determined for soils along the Front Range Corridor (mean = 890 mg/kg) (Severson and Tourtelot, 1994). In addition, the maximum concentrations of barium in both the BSCP and Rock Creek data sets are less than the mean of the Front Range study (Severson and Tourtelot, 1994). Barium is most closely associated with iron (r = 0.65) and aluminum (r = 0.64) in the BSCP study (see Table 4-8). Barium does not appear closely associated with silicon (r = 0.37), so the disparity between the means and ranges for the RFETS studies and the Front Range study may be the result of local variation.

Both the Rock Creek and BSCP data sets are considered representative of background conditions for surficial soils. Other studies suggest that barium concentrations of as much as 2,300 mg/kg may occur naturally in marine clays (Salomons and Forstner, 1984); because of this, the chemistry of samples collected from surficial soils in areas of disrupted topography (i.e., slump blocks, landslides, etc.) where the claystone bedrock is exposed, may contain higher concentrations of barium than samples collected from undisturbed topography.

Beryllium

Beryllium is a trace metal with a mean crustal concentration of 3 mg/kg; shales also average 3 mg/kg of beryllium (Krauskopf, 1979). Locally, the baseline concentration of beryllium in surficial soils was reported to range from 0.5 to 2.8 mg/kg (Severson and Tourtelot, 1994).

Parametric ANOVA indicates that there is no statistically significant difference between the means of the BSCP (0.66 mg/kg) and Rock Creek (0.68 mg/kg) data sets. In addition, the means and ranges of concentrations from these two studies are less than the means and less than the upper limit of the range for other studies (Severson and Tourtelot, 1994; Dragun, 1988; Shacklette and Boerngen, 1984). However, beryllium concentrations are quite closely correlated with aluminum (r = 0.90) in the BSCP study (see Table 4-8). Compared with the Front Range study (Severson and Tourtelot, 1994), the mean values for beryllium in the BSCP study are relatively low and suggest that a resistant alumino-silicate phase containing beryllium — such as beryl weathered from pegmatitic granites — was not completely digested during preparation of BSCP samples.

However, the Rock Creek and BSCP data sets are statistically indistinguishable, and are considered representative of background conditions for beryllium in the surficial soils near RFETS, using CLP analytical methods.

Cadmium

Cadmium is a heavy metal that occurs in trace amounts in crustal materials (mean = 0.15 mg/kg). Of all rock types, shales and claystones contain, on average, the highest concentrations of cadmium (mean = 0.3 mg/kg) (Krauskopf, 1979). In surficial soils, cadmium is reported to range from about 0.2 mg/kg to almost 7.0 mg/kg (Dragun, 1988). Salomons and Forstner (1984) report a mean value of 0.62 mg/kg for cadmium in soils. Cadmium is another metal that has undergone anthropogenic redistribution, resulting in significant enrichment of cadmium in

surficial soils. Cadmium is not closely correlated with either silicon (r = 0.19) or aluminum (r = 0.19) in the BSCP study (see Table 4-8).

The results of nonparametric ANOVA show that there is no significant difference between the BSCP (mean = 0.714 mg/kg) and Rock Creek (mean = 0.732 mg/kg) data sets for cadmium. In addition, the results of both studies lie within the range reported by Dragun (1988). Both data sets are considered representative of background conditions for cadmium in surficial soils.

Calcium

Calcium is the fifth-most abundant element in the earth's crust (mean = 41,000 mg/kg), is an essential nutrient for plants and animals, and exhibits a wide range of concentrations in various geologic materials (Krauskopf, 1979). In the soils of arid and semi-arid regions, calcium is commonly found accumulating below the surface horizon as calcium carbonate. This caliche or calcrete layer tends to be more massive in older soils, all other factors being equal (Birkeland, 1984; Gile et al., 1965; Gile and Grossman, 1966). However, the upper 5 cm of soil would more likely be a zone of calcium leaching rather than calcium accumulation. In surficial soils of the Front Range, the mean, minimum, and maximum concentrations are 8,300, 1,500, and 45,800 mg/kg, respectively (Severson and Tourtelot, 1994).

The mean concentration of calcium in the BSCP samples (2,969 mg/kg) is significantly less than that in the Rock Creek samples (5,068 mg/kg), according to results of parametric ANOVA. Calcium concentrations do show a relatively good correlation with aluminum (r = 0.79) in the BSCP study (see Table 4-8), and means are roughly one-half that reported in the Front Range study (Severson and Tourtelot, 1994), suggesting that some calcium may be bound up in the crystal lattice of an incompletely digested alumino-silicate mineral. However, the calcium concentrations reported for both data sets are within the low end of the range of published data for baseline soils (see Severson and Tourtelot, 1994; Shacklette and Boerngen, 1984).

Both the Rock Creek and BSCP data sets are considered to represent background levels for calcium in surficial soils near RFETS.

Cesium

Cesium is a trace metal, with a mean crustal concentration of 3 mg/kg; shales are relatively enriched in cesium, with a mean value of 7 mg/kg (Krauskopf, 1979).

All BSCP samples were analyzed and reported to contain concentrations of cesium less than the IDL of 12.1 to 14 mg/kg (i.e., 100-percent non-detects), whereas nine of the Rock Creek samples were considered non-detects, based on an instrument detection limit of 110 to 150 mg/kg. The other nine samples from Rock Creek were classified as detects, based on an IDL of approximately 0.45 mg/kg. The widely disparate IDLs make a meaningful comparison difficult.

There is no evidence to suggest that either the BSCP or Rock Creek areas are not representative of background for cesium in surficial soils.

Chromium

Chromium is a transition metal that averages 100 mg/kg in shales and in the overall crust; basalts contain an average of 200 mg/kg (Krauskopf, 1979). Chromium concentrations in background soils along the Front Range Corridor range from 7.2 to 130 mg/kg (Severson and Tourtelot, 1994). Severson and Tourtelot (1994) provide a concentration isopleth map for chromium in surficial soils along the Front Range Corridor. The highest concentrations (64.0 mg/kg) contoured in the map area are in the vicinity of RFETS, and may be related to local lithology. In addition, the widespread industrial use of chromium has contributed significant amounts to surficial soils (Hem, 1992).

Although the mean values for chromium were determined to be significantly different between the BSCP (11.3 mg/kg) and Rock Creek (15.0 mg/kg) data sets (based on parametric ANOVA), both means are less than the mean of the Front Range study (31 mg/kg) (Severson and Tourtelot, 1994), and no values exceed the maximum value reported for the Front Range study. Chromium concentrations in the BSCP study show a good correlation with both aluminum (r = 0.96) and iron (r = 0.83). The relatively low mean and good correlation with aluminum reported for chromium in the BSCP study suggest that some chromium may be bound up in the crystal lattice of an incompletely digested alumino-silicate mineral.

However, the range of concentrations for the BSCP and Rock Creek data are on the low end of the range reported for baseline chromium in soils of the Front Range and no values exceed the mean of the Front Range study. Both the BSCP and Rock Creek data sets are considered to represent background concentrations of chromium in surficial soils analyzed using CLP methods.

Cobalt

Cobalt is a transition metal that averages 22 mg/kg in the overall crust and 20 mg/kg in shales (Krauskopf, 1979), although much higher mean concentrations are reported for deep-sea clays (74 mg/kg) (Salomons and Forstner, 1984). A range of 0.3 to 47 mg/kg was reported for baseline soils along the Front Range Corridor (Severson and Tourtelot, 1994).

Parametric ANOVA found no significant difference in the mean concentrations for samples from the BSCP and Rock Creek areas. The mean values for the BSCP and Rock Creek data (7.3 mg/kg) and 7.8 mg/kg, respectively) are higher than the mean for cobalt in surficial soils, as reported by Severson and Tourtelot (1994) (mean = 4.0 mg/kg); however, the BSCP and Rock Creek data are within the range of concentrations reported for the Front Range study (Severson and Tourtelot, 1994) and other published data for background soils (Shacklette and Boerngen, 1984; Dragun, 1988). Cobalt shows a correlation with manganese (r = 0.65) and aluminum (r = 0.66) in the BSCP study (see Table 4-8).

The means and ranges of values for the BSCP and Rock Creek studies lie well within the range of concentrations reported for the Front Range study. Both the BSCP and Rock Creek data are representative of background concentrations of cobalt in surficial soils.

Copper

Overall crustal rocks and shales both contain, on average, 50 mg/kg copper. Baseline surficial soils along the Front Range Corridor contain copper concentrations ranging from 2.3 to 74 mg/kg, with a mean of 13 mg/kg (Severson and Tourtelot, 1994).

Results of nonparametric ANOVA indicate that the copper concentrations in the BSCP and Rock Creek data sets are not significantly different (both means = 12.9 mg/kg). Copper shows a good correlation with aluminum (r = 0.85) and iron (r = 0.80) in the BSCP study (see Table 4-8). The ranges of copper concentrations in BSCP and Rock Creek soils are on the low end of the range reported for copper in baseline soils of the Front Range; the means from all three studies are virtually the same.

The mean concentrations for the BSCP and Rock Creek data sets are statistically indistinguishable, and both are less than the mean for the Front Range study (Severson and Tourtelot, 1994). The BSCP and Rock Creek data do not exceed the upper range reported in the Front Range study, and both data sets are considered to be representative of background levels of copper in surficial soils near RFETS.

Iron

Iron is the fourth-most abundant element in the earth's crust, and is ubiquitous in many common rock-forming minerals. The average iron content of shales (47,000 mg/kg) is slightly less than the crustal average of 54,000 mg/kg (Krauskopf, 1979). Iron oxides "...are the most abundant of the metallic oxides in soils. They are present in most soils of the different climatic regions as very fine particles in one or more of their mineral forms and at variable levels of concentration" (Schwertmann and Taylor, 1989).

Using parametric ANOVA, the mean for the Rock Creek data (15,380 mg/kg) was determined to be significantly higher than the mean for the BSCP data (12,550 mg/kg). Iron concentrations show a good correlation with aluminum (r = 0.79), indicating association with aluminum hydroxides/oxyhydroxides or alumino-silicate minerals. However, the ranges of concentrations for the BSCP and Rock Creek data sets are within published values for background soils, and the means are less than the mean reported for surficial soils along the Front Range (mean = 21,600 mg/kg; Severson and Tourtelot, 1994).

The BSCP and Rock Creek data lie within the range of concentrations reported for other studies, and are considered representative of background conditions for iron in surficial soils near RFETS.

Lead

Lead is a heavy metal that occurs in minor amounts in crustal rocks (mean = 12.5 mg/kg); lead is slightly enriched in shales (mean = 20 mg/kg) (Krauskopf, 1979). Despite the relatively low concentrations in crustal rocks, the element has become widely dispersed through smelting operations and the use of leaded gasoline. This anthropogenic redistribution of lead has resulted in substantial enrichments of the metal in surficial soils, world-wide. Salomons and Forstner (1984) note a mobility factor of 100 (the highest of all metals) for lead, and that atmospheric deposition accounts for 60 percent of lead in lake sediments. Along the Front Range Corridor, baseline surficial soils contain from 9.7 to 130 mg/kg of lead (Severson and Tourtelot, 1994).

Surficial soils collected for the BSCP and Rock Creek studies contain an average of 33.6 and 37.5 mg/kg lead, respectively. Results from parametric ANOVA indicate that there is no significant difference between these two data sets. Although the mean for the Rock Creek data is slightly higher than the mean for surficial soils along the Front Range Corridor (35.0 mg/kg), the concentrations for the BSCP and Rock Creek data sets are well within the range of published values for background soils of the Front Range and other neighboring regions. Lead concentrations in the BSCP study show a weak correlation with iron (r = 0.44) and essentially no correlation with aluminum or silicon (see Table 4-8).

The similarity of the values for the BSCP, Rock Creek, and Front Range studies, as well as the lack of correlation of BSCP lead values with aluminum or silicon, indicates that the results are comparable. Both the BSCP and Rock Creek data sets are considered representative of baseline levels for lead in surficial soils near RFETS.

Lithium

Lithium is an alkali metal, with a mean crustal concentration of 20 mg/kg; shales are enriched with respect to lithium (mean = 60 mg/kg) (Krauskopf, 1979). Baseline surficial soils along the Front Range Corridor contain 7.7 to 52 mg/kg lithium (Severson and Tourtelot, 1994).

Parametric ANOVA indicates that the BSCP and Rock Creek means are significantly different (means = 7.7 and 11.0 mg/kg, respectively). Both these means, however, are approximately one-half the mean value determined for baseline soils of the Front Range Corridor (20.0 mg/kg; Severson and Tourtelot, 1994). The ranges for the BSCP and Rock Creek data also lie within the low end of the range of concentrations reported for Front Range soils. These results, in combination with the good correlation of lithium with aluminum (r = 0.86) in the BSCP study, suggest that some lithium is bound up in the crystal lattice of an incompletely digested aluminosilicate mineral. Lithium also shows a reasonably good correlation with iron (r = 0.80).

Although the mean concentrations of the BSCP and Rock Creek data sets are statistically different, data from both studies are well within the background range of lithium reported for surficial soils, and significantly less than the mean concentration of lithium in shales. Both the BSCP and Rock Creek data sets are representative of background levels of lithium in surficial soils.

Magnesium

Magnesium is the seventh-most abundant element (second-most abundant alkaline-earth metal) in the earth's crust (Krauskopf, 1979). The geochemical behavior of magnesium is similar to that of calcium, both occur in common rock-forming minerals and both are essential nutrients for animals and plants. Shales are depleted in magnesium (mean = 14,000 mg/kg) relative to the mean crustal concentration (23,000 mg/kg) (Krauskopf, 1979). In baseline surficial soils of the Front Range Corridor, magnesium concentrations range from 900 to 18,600 mg/kg (Severson and Tourtelot, 1994).

The mean concentration of magnesium in the Rock Creek samples (2,850 mg/kg) was significantly higher than that in BSCP samples (1,910 mg/kg), according to testing by parametric ANOVA. However, the ranges of concentrations for the Rock Creek and BSCP data sets lie within the range of concentrations for baseline surficial soils along the Front Range Corridor. Magnesium shows a good correlation with aluminum (r = 0.89) in the BSCP study (see Table 4-8). The relatively low values for magnesium in the BSCP and Rock Creek data sets suggest that some of the element may be bound up in the crystal lattice of an incompletely dissolved alumino-silicate mineral (such as feldspar, pyroxene, biotite, etc.).

Although the mean concentrations of magnesium are significantly different in the BSCP and Rock Creek data sets, both are less than the mean determined for soils along the Front Range (4,100 mg/kg), and both are considered representative of the background population for magnesium in surficial soils analyzed using CLP methods.

Manganese

Manganese is the twelfth-most abundant element in the earth's crust (mean = 1,000 mg/kg) (Krauskopf, 1979), and is relatively depleted in shales (mean = 850 mg/kg), although enriched in basaltic rocks (mean = 1,700 mg/kg). In soils, manganese oxide and hydroxide minerals are important constituents for two reasons. "First, Mn is an essential element for the nutrition of plants and animals... Secondly, the Mn oxides and hydroxides have a high sorption capacity for heavy-metal ions..." (McKenzie, 1989).

The geochemical behavior of manganese is somewhat similar to that of iron; both have multiple oxidation states. Manganese may substitute for iron, magnesium, or calcium in alumino-silicate minerals (Hem, 1992). On rock surfaces in arid regions, impure manganese oxides can form a ubiquitous coating known as "desert varnish." Both crystalline and amorphous forms of manganese oxides and hydroxides are found in soils as "...coatings on soil particles, as deposits in cracks and veins, and mixed with Fe oxides and other soil constituents in nodules" (McKenzie, 1989).

Baseline surficial soils along the Front Range Corridor contain from 90 to 850 mg/kg of manganese (Severson and Tourtelot, 1994). Other studies of soils in the western U.S. show a much greater range of manganese concentrations (Shacklette and Boerngen, 1984). The highest

concentrations noted in the Front Range study define a plume that appears to emanate from the vicinity of Clear Creek Canyon, and trends northeastward towards RFETS (Severson and Tourtelot, 1994).

Results from parametric ANOVA indicate that the Rock Creek and BSCP means (444 and 237 mg/kg, respectively) are significantly different. The mean for Rock Creek is heavily influenced by the presence of one extreme outlier (2,220 mg/kg). However, understanding the geochemical behavior and occurrence of manganese in soils, outliers can be explained by the presence of mafic rock fragments, manganese nodules, or manganese coatings that are heterogeneously dispersed but highly concentrated in soils. If, due to chance alone, such particles were included in a soil sample, the measured manganese concentrations may be unusually high.

Both the BSCP and Rock Creek data sets are considered to represent background conditions for manganese in surficial soils. The sole, extreme outlier of 2,220 mg/kg in the Rock Creek data set may be excluded from the calculation of summary statistics for the Rock Creek or combined Rock Creek/BSCP data sets; however, it is important to note that the geochemical behavior and distribution of manganese make it one of the more erratic (in terms of concentration) metals in the environment. Manganese is not closely correlated with silicon (r = 0.05) or aluminum (r = 0.31) in the BSCP data set; it shows some correlation with iron (r = 0.55) (see Table 4-8). The lack of correlation with aluminum and silicon suggests that all manganese in the samples was dissolved by the CLP digestion.

Other than a single datum, all the values for both the BSCP and Rock Creek data sets lie within the range for baseline surficial soils along the Front Range Corridor. Both data sets are considered representative of background concentrations of manganese in surficial soils near RFETS.

Mercury

Mercury occurs in trace amounts in crustal rocks (mean = 0.02 mg/kg), but is highly enriched in shales (mean = 0.3 mg/kg) (Krauskopf, 1979). Along the Front Range Corridor, baseline surficial soils contain from 0.01 to 0.099 mg/kg, with a mean of 0.024 mg/kg (Severson and Tourtelot, 1994). Mercury is one of the most volatile metals and has undergone significant anthropogenic enrichment and redistribution in the environment (Salomons and Forstner, 1984).

Because of the high rate of non-detects in the BSCP and Rock Creek data sets for mercury (65 and 96 percent, respectively), statistical comparisons could not be made. The Rock Creek data set has no detected values greater than the maximum value reported for Front Range soils; however, five of the BSCP results slightly exceed this maximum reported value. These exceedances may be attributed to errors involving censored data or to differences in the analytical techniques used on the BSCP and Front Range soil samples. The BSCP data for mercury show no correlation with silicon, aluminum, iron, or manganese (see Table 4-8).

Both the BSCP and Rock Creek data sets are considered representative of background concentrations of mercury in surficial soils near RFETS.

Molybdenum

Molybdenum is found in trace amounts in crustal rocks (mean = 1.5 mg/kg), and is slightly enriched in shales (mean = 2.0 mg/kg) (Krauskopf, 1979). However, deep-sea clays contain as much as 27 mg/kg (Salomons and Forstner, 1984).

The high rate of non-detects precluded the statistical comparison of the BSCP and Rock Creek data for molybdenum (91 and 96 percent non-detects, respectively). For baseline surficial soils along the Front Range, only about 7 percent of the samples were reported to contain detectable concentrations of molybdenum (Severson and Tourtelot, 1994). However, the ranges of detected concentrations for the BSCP and Rock Creek data sets are less than the range reported for soils in the western United States (Shacklette and Boerngen, 1984).

With no evidence to the contrary, both the BSCP and Rock Creek data sets are considered representative of background levels of molybdenum in surficial soils.

<u>Nickel</u>

Nickel is a trace metal in the earth's crust (mean = 75 mg/kg), and is slightly enriched in shales (mean = 80 mg/kg) and basalts (mean = 150 mg/kg) (Krauskopf, 1979). As much as 250 mg/kg nickel is reported for deep-sea clays (Salomons and Forstner, 1984). In baseline surficial soils of the Front Range, the mean, minimum, and maximum concentrations are 6.8, 0.36, and 130 mg/kg, respectively (Severson and Tourtelot, 1994). Nickel was also found to be positively correlated with marine sediments along the Front Range (Severson and Tourtelot, 1994).

The geochemical behavior of nickel is similar to that of cobalt; both elements substitute for iron in rock-forming minerals, and both tend to be coprecipitated with iron and manganese oxides (Hem, 1992). The widespread cultural use of nickel has contributed significant amounts of the metal to the environment (Hem, 1992).

Results from parametric ANOVA indicate that the mean concentrations of the BSCP and Rock Creek data sets are significantly different (9.6 and 12.6 mg/kg, respectively). However, the ranges of concentrations for these two data sets lie within the low end of the range for baseline soils of the Front Range Corridor (Severson and Tourtelot, 1994). Nickel data in the BSCP study show reasonably good correlations with aluminum (r = 0.88), iron (r = 0.76), and silicon (r = 0.69).

Because the results of numerous studies show a much higher range of concentrations for nickel, and because the ranges of both the BSCP and Rock Creek data sets lie within these reported ranges, the two data sets are considered subpopulations of overall background population for nickel in surficial soils analyzed using CLP methods.

Potassium

Potassium is the seventh-most abundant element in the earth's crust (mean = 21,000 mg/kg), and is slightly enriched in shales (mean = 25,000 mg/kg) (Krauskopf, 1979). This alkali metal is an essential nutrient for both animals and plants (Hem, 1992). In baseline surficial soils of the Front Range, the mean, minimum, and maximum concentrations are 12,700, 5,800, and 27,800 mg/kg, respectively (Severson and Tourtelot, 1994).

Results of parametric ANOVA indicate that mean concentrations in the BSCP and Rock Creek data sets are significantly different (means = 2,061 and 2,977 mg/kg, respectively). However, both means are less than the mean reported for baseline surficial soils along the Front Range Corridor, and the ranges of the BSCP and Rock Creek data sets lie on the low end of ranges reported for the Front Range and other studies (Severson and Tourtelot, 1994; Shacklette and Boerngen, 1984). Potassium shows a strong correlation with aluminum (r = 0.91) in the BSCP study (see Table 4-8), suggesting that the relatively low values reported for RFETS analyses may be the result of incomplete dissolution of potassium feldspar during the CLP digestion.

Both the BSCP and Rock Creek data sets are considered to represent background concentrations of potassium in soils near RFETS, as measured using CLP analytical methods.

Selenium

Selenium is distributed as a trace element in the earth's crust (mean = 0.05 mg/kg), but it is greatly enriched in shales (mean = 0.6 mg/kg) (Krauskopf, 1979). Soils along the Front Range average 0.23 mg/kg selenium, and range from 0.1 to 1.6 mg/kg (Severson and Tourtelot, 1994).

The geochemical behavior of selenium is somewhat similar to that of sulfur; both occur as oxyanions in oxidizing solutions (Hem. 1992). Selenium is also associated with iron and uranium; coprecipitating or adsorbed onto ferric oxyhydroxides, and deposited along with uranium in sandstones (Hem, 1992).

Results from nonparametric ANOVA indicate that selenium concentrations are significantly higher in the BSCP samples than in the Rock Creek samples (means = 0.63 and 0.43 mg/kg, respectively). The non-detect rates for these two data sets (BSCP = 39-percent non-detects, Rock Creek = 22-percent non-detects) are not excessive, and actually are much lower than the non-detect rate (76 percent) reported by Severson and Tourtelot (1994). Both the BSCP and Rock Creek data lie within the range reported for baseline surficial soils along the Front Range Corridor. Selenium values in the BSCP data set show no correlation with aluminum, silicon, iron, or manganese (see Table 4-8). Modeling results from another RFETS study (EG&G, 1995d) suggested that selenium was present as native selenium in the subsurface environment. If this were also the case for surficial soils, this could explain the lack of correlation of selenium with other metals.

Although the BSCP samples contain significantly higher concentrations of selenium than the Rock Creek samples, both data sets lie within the range reported for other studies and both are considered representative of background selenium levels in surficial soils near RFETS.

Silicon

Silicon is second in abundance only to oxygen in the earth's crust (mean = 280,200 mg/kg); it is slightly depleted in shales (mean = 238,000 mg/kg) (Krauskopf, 1979). In baseline surficial soils along the Colorado Front Range, silicon averages 316,000 mg/kg, and ranges from 248,000 to 402,000 mg/kg (Severson and Tourtelot, 1994).

The most common silicon mineral is SiO_2 , in all its polymorphs, from quartz to chalcedony, cristobalite, and opal. Feldspars and clays comprise the most common alumino-silicate minerals. In natural waters, the concentration of dissolved silica appears to be controlled by the solubility of amorphous silica (Hem, 1992). Because quartz is not a highly substituted mineral (Drees et al., 1989), the correlations between silicon and various metals are not as good as those between aluminum and various metals (see Table 4-8).

The granitic clasts contained in the soil parent material (Rocky Flats Alluvium) contain abundant quartz crystals, which would be strongly resistant to all but a hydrofluoric acid digestion. The analysis following CLP digestion would underestimate the concentration of silicon more than any other element analyzed for this study because quartz is one of the most abundant and persistent minerals in soils. Quartz "...often constitutes the major portion of all sand and silt fractions and in a major component of the coarse clay fraction of many soils." (Drees et al., 1989).

Results from nonparametric ANOVA indicate that the BSCP mean for silicon (1,383 mg/kg) is significantly greater than the Rock Creek mean (781 mg/kg). The mean value reported for the Front Range study is significantly higher due to different methods of sample preparation and analysis. Because quartz cannot be completely dissolved by a CLP digestion, silicon concentrations reported for solid samples from RFETS are not directly comparable with results from other studies that did not use CLP analytical methods for silicon.

Although the mean concentration of silicon in the BSCP data set is nearly twice as high as the mean concentration in the Rock Creek data set, both data sets are considered to be subsets of the same background population, analyzed using CLP methods.

<u>Silver</u>

Silver is a precious trace metal that averages only 0.07 mg/kg in crustal rocks; shales show a slight enrichment, with 0.1 mg/kg silver (Krauskopf, 1979). Despite wide-spread industrial use of the metal, silver concentrations in surficial soils are generally below the limit of detection.

There were no detected values for silver in either the BSCP or Rock Creek data sets. This detection rate generally agrees with that of the Front Range study (approximately 3 percent detectable concentrations) (Severson and Tourtelot, 1994).

Statistical comparisons could not be performed on the 100-percent non-detect data. Based on the concentration of silver in geologic materials (Krauskopf, 1979), one may expect concentrations significantly less than the IDLs of 1 to 3 mg/kg reported for RFETS data.

Sodium

Sodium is the most abundant alkali metal and the sixth-most abundant element in the earth's crust (mean = 24,000 mg/kg); shales are depleted relative to other rock types (shale mean = 9,000 mg/kg) (Krauskopf, 1979). In baseline surficial soils along the Colorado Front Range, the mean, minimum, and maximum concentrations of sodium are 4,600, 1,800, and 13,300 mg/kg, respectively (Severson and Tourtelot, 1994).

Sodium salts are highly soluble, and leaching will remove these salts from the upper portions of weathered soils. Albitic feldspars (NaAlSi₃O₈) contained in granitic clasts within the Rocky Flats Alluvium probably contribute much of the sodium measured in surficial soils at RFETS. The age of the soils developed on the Rocky Flats Alluvium (approximately 2 million years) is generally greater than other soils along the Front Range Corridor. Because of the high solubility of sodium, and the greater affinity of divalent cations for any ion-exchange sites, any sodium released by weathering is probably rather quickly flushed from the upper 5 cm of soil sampled for RFETS studies.

Results from parametric ANOVA indicate that Rock Creek soil samples contain significantly more sodium than do BSCP samples (means = 115 and 62 mg/kg, respectively), although both sets of samples contain far less sodium than that reported by the Front Range study (Severson and Tourtelot, 1994). Sodium concentrations in BSCP samples are not closely correlated with silicon (r = 0.32), aluminum (r = 0.46), iron (r = 0.38), or manganese (r = 0.11) (see Table 4-8). Both the age of the Rocky Flats soils and the presence of sodium in feldspars may contribute to the low range of values reported for sodium in the BSCP (range = 43.8 to 105 mg/kg) and Rock Creek (range = 56.9 to 115 mg/kg) data sets.

Although the mean concentration of sodium in the Rock Creek data set is nearly twice as high as the mean concentration in the BSCP data set, both data sets are considered to be subsets of the same background population, as determined by CLP analytical methods.

Strontium

Strontium is the fourth-most abundant alkali-earth metal and the fifteenth-most abundant element in the earth's crust (mean = 375 mg/kg); shales are slightly enriched with respect to strontium (mean = 400 mg/kg) (Krauskopf, 1979). In baseline surficial soils along the Colorado Front Range, the mean, minimum, and maximum concentrations are 270, 85, and 860 mg/kg, respectively (Severson and Tourtelot, 1994).

The geochemical behavior of strontium is similar to that of magnesium, calcium, and barium; all form sulfate, carbonate, and alumino-silicate minerals. Both the carbonate (strontianite) and sulfate (celestite) of strontium are common in sediments, and strontianite is considerably less soluble than calcite under the same conditions (Hem, 1992). Feldspars, a family of alumino-silicate minerals, contain varying amounts of sodium, potassium, and calcium, as well as smaller amounts of barium, cesium, copper, lead, magnesium, and strontium (Huang, 1989). Huang (1989) notes that "...feldspars are found in virtually all sediments and soils in quantities that vary with the nature of the parent material and the stage of weathering."

Results from parametric ANOVA indicate that the mean concentrations of strontium in the BSCP (28.4 mg/kg) and Rock Creek (35.3 mg/kg) data sets are not significantly different. The means and ranges of both these data sets are much less than those reported for baseline soils in the Front Range study. Strontium correlates with aluminum (r = 0.80) and silicon (r = 0.70) in the BSCP data set (see Table 4-8). Both of these observations indicate that most of the strontium is probably bound up in the crystal lattice of incompletely digested alumino-silicate minerals, such as feldspars.

The BSCP and Rock Creek data sets are considered representative of background concentrations for strontium in surficial soils near RFETS, as measured using CLP analytical methods.

Thallium

Thallium is a trace element occurring in low concentrations in crustal rocks (mean = 0.8 mg/kg), with a slight enrichment in shales (mean = 1.0 mg/kg) and granites (mean = 1.2 mg/kg) (Krauskopf, 1979).

The high rate of non-detects for thallium (100-percent non-detects for BSCP, 65-percent non-detects for Rock Creek), and the different detection limits used (0.8 mg/kg for BSCP, 0.3 mg/kg for Rock Creek) make any statistical comparison of these data sets dubious.

Professional judgment, rather than statistical analysis, should probably be used when evaluating data for thallium in surficial soils. Assessment of the detection limits and analytical methods used should be taken into account during the evaluation.

Barring evidence to the contrary, both the BSCP and Rock Creek data sets probably represent baseline levels of thallium in surficial soils near RFETS.

Tin

Tin averages 2.5 mg/kg in crustal rocks, and is slightly enriched in shales (6.0 mg/kg) (Krauskopf, 1979). In surficial soils along the Colorado Front Range, tin averages 1.3 mg/kg and ranges from 0.1 to 34 mg/kg (Severson and Tourtelot, 1994).

Because of the vastly different detection limits reported for the BSCP (about 4.8 mg/kg or less, 9-percent detection rate) and Rock Creek (approximately 28 mg/kg, 61-percent detection rate) data for tin, statistical comparisons are neither meaningful nor helpful in assessing the data.

The Rock Creek data for tin are censored at a high detection limit, which limits the utility of the data set for comparison with other data sets that are censored at lower detection limits. The BSCP data set could be used for comparisons of tin concentrations that are censored at a lower concentration. A careful review of the reported detection limits for all data sets should be completed prior to any comparisons of tin data.

Vanadium

Vanadium is a transition metal that averages 110 mg/kg in crustal rocks, and is slightly enriched in shales (mean = 130 mg/kg) and basalts (mean = 250 mg/kg) (Krauskopf, 1979). In baseline surficial soils along the Colorado Front Range, the mean, minimum, and maximum concentrations of vanadium are 68, 18, and 260 mg/kg, respectively (Severson and Tourtelot, 1994).

The geochemical behavior of vanadium is complicated, due to the occurrence of three valence states (V^{+3} , V^{+4} , and V^{+5}), although the V^{+5} state is probably dominant in oxygenated aqueous systems (Hem, 1992). Vanadium — like arsenic, selenium, antimony, and uranium — tends to form oxyanions in solution, with a fairly high solubility possible in an oxidizing alkaline environment (such as that commonly found at RFETS). Vanadium may be associated with iron and uranium, and is present in coals and other fossil fuels (Hem, 1992).

Results from parametric ANOVA indicate that the mean concentrations of vanadium in BSCP (27.8 mg/kg) and Rock Creek (31.6 mg/kg) soil samples are not significantly different. The mean and maximum concentrations for these two studies are less than the mean and maximum reported for Front Range baseline soils. The BSCP data for vanadium show a strong correlation with aluminum (r = 0.90) and a lesser correlation with iron (r = 0.77) (see Table 4-8). These correlations, combined with the relatively low means for the BSCP and Rock Creek studies, suggest that some vanadium is bound up in the crystal lattice of incompletely digested aluminosilicate minerals. The means for the RFETS studies are approximately one-half the mean reported for the Front Range study, and the maximum values for the RFETS studies (45.8 and 45.6 mg/kg) are considerably less than the 260 mg/kg maximum reported in the Front Range study (Severson and Tourtelot, 1994).

Both the BSCP and Rock Creek data sets are considered to represent background levels of vanadium in surficial soils near RFETS, and are directly comparable to data from other RFETS studies utilizing CLP analytical methods.

Zinc

Zinc averages about 70 mg/kg in crustal rocks, and is slightly enriched in shales (mean ≈ 90 mg/kg) and basalts (mean ≈ 100 mg/kg) (Krauskopf, 1979). In baseline surficial soils of the

Front Range, the mean, minimum, and maximum concentrations of zinc are 63, 21, and 190 mg/kg, respectively (Severson and Tourtelot, 1994).

Zinc is widely used in industry, and, as a result, has been significantly remobilized and redistributed in the environment, world-wide (mobilization factor = 34). Zinc is likely to be related to other metal oxides or mineral surfaces through adsorption or coprecipitation (Hem, 1992).

Testing by parametric ANOVA indicates that there is no significant difference between the BSCP and Rock Creek data sets. The mean concentrations of zinc in the BSCP and Rock Creek samples are 49.6 and 55.8 mg/kg, respectively. For the BSCP data, zinc correlates well with aluminum (r = 0.86) and iron (r = 0.75) (see Table 4-8). However, the geochemical behavior of zinc suggests that it is more likely to be coprecipitated with or adsorbed onto the surfaces of aluminum and iron oxides/hydroxides rather than be incorporated into a feldspar crystal lattice.

The mean values for the BSCP and Rock Creek data are slightly less than the mean reported for Front Range soils, and the ranges of concentrations lie within the range of the Front Range study. Both the BSCP and Rock Creek data sets are considered to be representative of background levels of zinc in surficial soils near RFETS.

4.2 GROUP 1 ANALYTES: NATURALLY OCCURRING RADIONUCLIDES

The radionuclides described here are naturally occurring in the crustal rocks of the earth. Various fractionation and decay processes may result in a relative depletion or enrichment of a radionuclide in a given rock type. Also, since the inception of the Industrial Revolution and, later, the Atomic Age, there has been anthropogenic redistribution of radionuclides in the environment.

In RFEDS data, the standardized results are given in activity units of pCi/g for solid samples. Basically, one curie (Ci) is defined as 3.7×10^{10} disintegration per second, which is the approximate activity of one gram of radium in equilibrium with its daughter products (Hem, 1992). Also reported in the RFEDS data is the 95-percent upper confidence limit (UCL) value as the variable, "ERROR". This error term reflects the propagation of analytical errors associated with the reported measurement value, and provides an estimation of the uncertainty with each numeric result that is reported.

To provide a better understanding of the meaning of the results for the BSCP and Rock Creek studies, the following discussion briefly summarizes essential information for each radionuclide. Data from several sources are included to help the reader put the results of the BSCP (see Table 3-1) and Rock Creek (see Table 4-1) studies into a larger, overall perspective. The Front Range study (Severson and Tourtelot, 1994) did not evaluate radionuclides in surface soils.

Box-and-whisker plots and the results of statistical comparisons for the BSCP, Rock Creek, and combined data sets for naturally occurring radionuclides are presented in Appendix D and Table 4-4, respectively.

Radium-226

Radium-226 is one of the four naturally occurring isotopes of radium, and is present in soils due to the radioactive decay of uranium-238. The half-life of radium-226 is about 1,622 years (Friedlander et al., 1964). Radium is an alkaline-earth metal, with a geochemical behavior somewhat similar to that of barium (Hem, 1992).

Published data indicate that the mean activity of radium-226 is about 1.3 pCi/g in igneous rocks, 1.08 pCi/g in shales, and about 0.73 pCi/g in sandstones and two soil samples (Eisenbud, 1987). Myrick et al. (1983) compiled a summary of radium-226 data for soils of the world, the United States, and Colorado. Myrick et al. (1983) determined that the nationwide background level of radium-226 in surficial soils was 1.1 pCi/g; in surficial soils of Colorado, they reported a range of 0.48 to 3.4 pCi/g, with a mean of about 1.3 pCi/g.

The mean activities of radium-226 in soil samples from the BSCP (mean = 0.519 pCi/g) and Rock Creek (mean = 0.945 pCi/g) studies show significant differences, according to the results from parametric ANOVA. Although uranium was used in industrial activities at RFETS, the EDA indicated that the Rock Creek area was unaffected by uranium-238 and its daughter product, radium-226.

Both the BSCP and Rock Creek data fall within or below the range of values reported for Colorado (Myrick et al., 1983). The consistency with published values for the background range of activities for radium-226 indicates that both the BSCP and Rock Creek data sets are representative of background levels for radium-226 in surficial soils near RFETS.

Radium-228

Radium-228 occurs naturally in soils due to the radioactive decay of thorium-232. The half-life of radium-228 is about 6.7 years. It decays to actinium-238 (half-life = 6.13 hours) by beta emission; actinium-238 then decays to thorium-228 (half-life = 1.9 years) by beta emission; the decay chain continues, ultimately to produce the stable isotope, lead-208 (Friedlander et al., 1964).

According to the results from parametric ANOVA, the mean activities of radium-228 in soil samples from the BSCP (mean = 1.35 pCi/g) and Rock Creek (mean = 2.18 pCi/g) studies show significant differences. Although small amounts of thorium-232 were used in industrial activities at RFETS, it is not considered to be associated with significant emissions from the plant (ChemRisk, 1994).

Both the BSCP and Rock Creek data sets are considered representative of background levels of radium-228 in surficial soils near RFETS.

<u>Uranium</u> (total)

Natural uranium consists of several isotopes, of which uranium-238 is the most abundant. Uranium is geochemically classified as a lithophile, in that it tends to be concentrated in felsic (granitic) igneous rocks, rather than in more mafic (basaltic) ones (Krauskopf, 1979). The uranium ion also tends not — because of its size and charge — to be substituted into the crystal lattices of other minerals; thus making it an incompatible lithophilic element that is accumulated in late-stage, residual magmatic fluids (Krauskopf, 1979).

Uranium is widely distributed in the earth's crust (mean = 2.7 mg/kg), with a preferential enrichment in granites (mean = 5.0 mg/kg) and shales (mean = 3.5 mg/kg) (Krauskopf, 1979). Generally, in soils, the hydroxides and hydrous oxides of actinides are the important phases (Rai and Kittrick, 1989).

Because the major uranium isotopes used during industrial activities at RFETS also occur naturally in the local environment, there is a need to distinguish naturally occurring uranium from potential uranium contamination from RFETS. Mineral deposits of uranium have been described for sedimentary rocks east of the Colorado Front Range, and vein-type deposits are found in Precambrian rocks within a few miles of RFETS (e.g., the Schwartzwalder Mine) (DOE, 1993). However, the isotopic abundances (by weight) in natural uranium are 99.2729 percent uranium-238, 0.7204 percent uranium-235, and 0.0057 percent uranium-234, whereas the percentages in enriched uranium for nuclear-powered reactors are about 97, 3, and 0.03 percent, respectively (EG&G, 1988). Even greater proportions of uranium-235 and uranium-234 enrichment may be found in some nuclear-weapons components (EG&G, 1988). Both enriched and depleted uranium were used in industrial activities at RFETS.

As noted in the Background Geochemical Characterization Report (DOE, 1993), uranium-234 contributes about 97 percent of the alpha activity in fully enriched uranium, whereas uranium-238 contributes about 76 percent of the alpha activity in fully depleted uranium. Therefore, the ratio of uranium-233+234 to uranium-238 may provide a means for distinguishing naturally occurring uranium from RFETS-related uranium. Calculations provided in the Background Geochemical Characterization Report (DOE, 1993) indicate that the ratios of relative activities of uranium-233+234 to uranium-238 are approximately 0.09 in depleted uranium, 1.06 in natural uranium, 5.74 in power-reactor fuel, and a higher ratio for weapons components. This said, the data analyst must be cognizant of the large analytical uncertainties for activities of uranium isotopes that are at or near the limit of detection. These large uncertainties must be taken into account when evaluating the isotopic ratios for uranium data.

For soil samples from RFETS, three isotopes of uranium are typically analyzed: uranium-238, uranium-235, and (combined) uranium-233+234. A separate discussion for each isotope is presented below.

Uranium-233,234

Uranium-233 and uranium-234 cannot be measured separately by the analytical methods employed for RFETS samples. These two isotopes comprise a small fraction of the total concentration of uranium in natural materials; uranium-234 occurs at a relative abundance of 0.0057 percent by weight. However, despite the low abundance of uranium-233+234 relative to other isotopes of uranium, uranium-233+234 contributes a large fraction of the total alpha activity associated with uranium (Friedlander et al., 1964). The half-life of uranium-234 is 248,000 years (Friedlander et al., 1964).

Results from parametric ANOVA indicate that the mean activities of uranium-233+234 in BSCP (1.097 pCi/g) and Rock Creek (1.145 pCi/g) samples are not significantly different. This finding agrees with the EDA, which indicated that the Rock Creek area was unaffected by uranium from industrial activities at RFETS.

Both the BSCP and Rock Creek data sets are considered to be representative of background levels of uranium-233+234 in surficial soils near RFETS.

Uranium-235

Uranium-235 is naturally occurring at a relative abundance of 0.72 percent by weight of total uranium. The half-life of uranium is about 713 million years (Friedlander et al., 1964).

The mean activities of uranium-235 in BSCP (0.054 pCi/g) and Rock Creek (0.053 pCi/g) samples are not significantly different, as determined by parametric ANOVA. This finding concurs with that of the EDA, which concluded that the Rock Creek area was unimpacted by industrial activities at RFETS.

Both the BSCP and Rock Creek data sets are considered to be representative of background levels of uranium-235 in surficial soils near RFETS.

Uranium-238

As noted previously, uranium-238 constitutes greater than 99 percent (by weight) of naturally occurring uranium. Myrick et al. (1983) reviewed the published values for uranium-238 in the surficial soils of Colorado. The range of these values encompasses the range of values obtained for both the BSCP and Rock Creek samples.

Uranium-238 has a half-life of approximately 4.51 billion years, decaying through thorium-234 (half-life = 24.1 days), protactinium-234 (half-life about 6.7 hours), to uranium-234 (half-life = 248,000 years), and, ultimately to the stable isotope, lead-206 (Friedlander *et al.*, 1964).

There were two outliers for uranium-238 in the BSCP data set; these two values were not used to calculate the UTL for uranium-238, but the values were included in the calculation of all other BSCP summary statistics for uranium-238 (see Section 2.5 for discussion of statistical

methodology). Results of parametric ANOVA indicate that the mean activities of uranium-238 in BSCP (1.183 pCi/g) and Rock Creek (1.090 pCi/g) samples are not significantly different. This agrees with the findings of the EDA, which indicated that the Rock Creek area was not impacted by uranium from industrial activities at RFETS.

Both the BSCP and Rock Creek data sets are considered representative of baseline levels of uranium-238 in surficial soils near RFETS.

4.3 GROUP 1 ANALYTES: SUPPORTING PARAMETERS

Ammonia

Only nine Rock Creek samples were analyzed for ammonia. The results from parametric ANOVA indicate that there is no significant difference between mean concentrations of ammonia in the 20 BSCP samples (2.0 mg/kg) and the nine Rock Creek samples (1.2 mg/kg).

Both data sets can be considered to provide representative values for baseline concentrations of ammonia in surficial soils near RFETS.

Carbonate as CaCO₃

No measurable concentrations of CaCO₃ were detected in the soil samples for either the BSCP or Rock Creek studies. In the semi-arid climate at RFETS, natural leaching during infiltration of precipitation into the soil will tend to dissolve CaCO₃ from the upper layers of the soil profile and redeposit CaCO₃ at a greater depth. Subsurface caliche (calcrete) horizons slowly form as a result of the mobilization and redeposition of CaCO₃ within the soil profile. Such subsurface carbonate deposits have been noted in soils across the Rocky Flats pediment surface.

Nitrate/Nitrite

Only nine Rock Creek samples were analyzed for nitrate/nitrite. The results from parametric ANOVA indicate that the mean concentration of nitrate/nitrite in the 20 BSCP samples (4.0 mg/kg) is significantly greater than that of the Rock Creek samples (2.3 mg/kg).

Oil and Grease

Analysis for oil and grease, a "water-quality parameter," was included only to complete the comparison with the Rock Creek data set. Results from parametric ANOVA indicate no significant difference between the BSCP (mean = 95 mg/kg) and Rock Creek (mean = 86 mg/kg) data sets.

Only six of the Rock Creek samples were analyzed for pH, and four of these samples have higher pH values than any of the BSCP samples. The mean pH of the Rock Creek samples (7.6) is greater than the mean pH of the BSCP samples (6.4). The pH values for the combined BSCP/Rock Creek data set range from 6.0 to 9.1, with a combined mean of 6.65.

Specific Conductivity

Only six of the Rock Creek samples were analyzed for specific conductivity. Results from parametric ANOVA indicate that the mean specific conductivity for the Rock Creek samples is significantly different from that for the BSCP samples. The Rock Creek mean (22.06 μ mhos/cm) was slightly greater than the BSCP mean (20.83 μ mhos/cm).

Total Organic Carbon (TOC)

Only six of the Rock Creek samples were analyzed for TOC. Results from parametric ANOVA indicate no significant difference between the BSCP (mean = 16,130 mg/kg) and Rock Creek (mean = 15,570 mg/kg) data sets.

4.4 GROUP 2 ANALYTES: FALLOUT RADIONUCLIDES

Significant variability in the distribution of fallout radionuclides is found in the environment. This variability has been attributed to regional and local meteorological conditions and topographical features of the earth's surface. Weather patterns may have influenced the movement, dispersion, and ultimate deposition of radioactive debris onto the soil surface. Uneven distribution of fallout on the earth's surface also can be caused by rain and snow scavenging of radioactive particles from the atmosphere. As air masses moving from west to east across the United States are orographically lifted over mountain ranges, subsequent deposition of fallout radionuclides is greater on the downwind side of the mountain due to the downwind mixing of high-level air masses containing elevated concentrations of radionuclides from weapons testing. Measurements on the downwind sides of both the Cascade Mountain Range and the Rocky Mountains have demonstrated this effect (Perkins and Thomas, 1980; Purtyman et al., 1990; Hardy et al., 1973).

The comparison between the Rock Creek and remote BSCP data indicates that the differences in activities are relatively low compared to programmatic preliminary remediation goals (PPRGs) and other decision-making criteria (e.g., the 0.9 pCi/g Colorado construction standard for plutonium). Uncertainties associated with measuring low actinide activities near background levels are well documented (Bernhardt, 1976; Sill, 1982). The magnitude of the difference may be masked by the magnitude of the error determined by the propagation of error (counting error and analytical error) and laboratory precision (e.g., RPD of replicate analyses). As noted earlier, RFEDS data for radionuclides provide a value of the 95-percent UCL for each radionuclide analysis. The numeric value of 95-percent UCL is given as the "ERROR" variable in RFEDS data.

Summary statistics for the activities of fallout radionuclides for samples from the Rock Creek, and the BSCP studies, as well as for selected fallout radionuclides (i.e., all but americium and plutonium isotopes) for the combined data set, are presented in Table 4-5, and Table 4-6, respectively. Results of other studies are summarize in Table 4-7. Comparative illustrations of the ranges and means for fallout radionuclides and box-and-whisker plots are given in Figures 4-35 through 4-39 and Appendix D, respectively.

Americium-241

Fission and fusion from nuclear-weapons explosions create conditions for nuclear-capture reactions, which produce large quantities of plutonium-241 and small amounts of americium-241 (Schmidt, 1994). Americium-241 is a radioactive daughter product (by beta emission) of plutonium-241. The half-life of plutonium-241 is about 14.4 years, whereas the half-life of americium-241 is about 438 years, so americium-241 increases in abundance in soils as plutonium-241 decays.

Americium-241 is found in regional soils as a result of fallout from nuclear-weapons explosions. Near RFETS, americium-241 may also be present in soils as a result of industrial activities at RFETS, which released some weapons-grade plutonium into the environment. Most americium (as a daughter product of plutonium) was probably deposited onto soils as a result of the leakage of plutonium-contaminated cutting oils from waste barrels stored at the 903 Pad, which is located at the eastern edge of the RFETS Industrial Area.

Subsequent resuspension of contaminated soil particles from the 903 Pad, entrainment into the atmosphere, and redeposition onto soil in areas downwind (generally east of the 903 Pad) are thought to be the major mode for americium and plutonium contamination in soils on and nearby RFETS (ChemRisk, 1994). Other minor contributions of americium and plutonium contamination that may have impacted soils on and nearby RFETS, included two fires (1957 and 1969) in the production facilities, and routine releases of small amounts of plutonium and americium throughout the production history of RFETS (ChemRisk, 1994).

Results from the application of parametric ANOVA indicate that the BSCP and Rock Creek mean activities for americium-241 were significantly different, with the Rock Creek mean (0.020 pCi/g) higher than the BSCP mean (0.0107 pCi/g). Because it is not clear whether the higher americium-241 activity at Rock Creek is a result of RFETS industrial activity, total study error, or regional variation in fallout distribution, the BSCP data set (Group 2, remote) is the better choice to represent background levels of americium-241 in surficial soils, and should be used for future RCRA/CERCLA decisions.

Cesium (total)

Cesium is an alkali metal that is readily taken up by vegetation, or bound strongly to soils (i.e., it is not preferentially partitioned into the aqueous phase). Because of this geochemical behavior, all isotopes of cesium deposited from fallout, which peaked in 1963 (Glasstone and

Jordan, 1980), have been since redistributed by erosional processes. As soils are eroded and redeposited, so is the cesium. This redistribution has created post-depositional zones of relative radiocesium depletion (i.e., erosional areas) and zones of relative radiocesium enrichment (i.e., areas of soil and sediment accumulation). Because of this tendency for post-depositional redistribution, soil samples collected for comparison should be taken from similar erosional or depositional zones.

Cesium-134

Cesium-134 is found in regional soils as a result of fallout from nuclear-weapons explosions. The half-life of cesium-134 is approximately two years (Friedlander et al., 1964).

For the BSCP study, cesium-134 was included in the list of analytes for completeness and comparability with existing data. According to the results of nonparametric ANOVA, the mean activity of cesium-134 in BSCP samples is significantly higher than that of the Rock Creek samples. However, because no local source of cesium-134 has been identified, the difference between Rock Creek and BSCP remote data for cesium-134 is attributed to regional variation in fallout distribution or differential post-depositional redistribution, rather than potential contamination from RFETS. The mean activities of cesium-134 for the BSCP and Rock Creek data sets are 0.20 and 0.084 pCi/g, respectively.

Both the BSCP (Group 2, remote) and Rock Creek data sets are considered to represent fallout background levels for cesium-134 in surficial soils of the Colorado Front Range.

Cesium-137

Cesium-137 is distributed in regional soils as a result of fallout from nuclear-weapons explosions. Cesium-137 has a half-life of approximately 30 years (Friedlander et al., 1964). Because cesium-137 emits gamma radiation, its presence in soils can readily be determined by field instruments. Cesium-137 was distributed world-wide by fallout, and has been used as an indicator of disturbance of surface soils (including natural erosion and deposition) because of its strong binding ability to soils and the ease of detecting cesium-137 with field instruments (Ritchie and McHenry, 1990; Arnalds et al., 1989). Although cesium-137 has not been associated with RFETS industrial activities, it was included in the list of BSCP analytes for completeness and comparability with existing data.

Results from parametric ANOVA indicate that the mean activity of cesium-137 in Rock Creek samples (mean = 1.41 pCi/g) is not significantly different from that of the BSCP samples (mean = 0.941 pCi/g).

Both the BSCP and Rock Creek data sets are considered to represent fallout background levels for cesium-137 in surficial soils along the Front Range urban corridor.

Plutonium-239+240

Weapons-grade plutonium is composed of the following isotope mixture by weight (ChemRisk , 1994):

Plutonium-238	0.01 %
Plutonium-239	93.79 %
Plutonium-240	5.80 %
Plutonium-241	0.36 %
Plutonium-242	0.03 %

As discussed in Section 2.4.4, the alpha spectrometry used for plutonium analysis cannot resolve the alpha energies of plutonium-239 from plutonium-240, so they are reported together. Monitoring at RFETS has focused attention on the most abundant isotopes of plutonium; plutonium-239 and plutonium-240. The half-life of plutonium-239 is approximately 24,400 years; the half-life of plutonium-240 is approximately 6,580 years (Friedlander *et al.*, 1964). Table 4-7 presents the range of plutonium activities for other background sampling efforts in the Front Range region.

Plutonium is relatively immobile in soil and is unlikely to move vertically downward through the soil column. Krey et al. (1976) found that 90 percent of the plutonium activity in soils at and near RFETS was held in the upper 10 centimeters of soil. Litaor et al. (1994) sampled 26 soil pits east of the 903 Pad and found that 90 percent of the activity was contained in the upper 12 cm of soil. Data compiled from 173 soil samples in several western states, including Colorado, sampled in two depth increments (i.e., 0 to 5 cm and 5 to 30 cm) indicated that as recently as 1987, more than 83 percent of the plutonium was found in the upper 5 cm of soil (McArthur and Miller, 1989); most of these samples were located remotely from the Nevada Test Site (NTS).

These studies indicate that most of the plutonium accumulated from local, regional, and global sources appears to have remained in the surface-soil layer. Erosion and redeposition on the soil surface by wind, water, snowdrifting, burrowing animals, and other faunal activity may be additional factors affecting the variability of plutonium concentrations in the surficial soils.

Results from parametric ANOVA between BSCP and Rock Creek data for plutonium-239+240 activities indicate that the mean activity for the Rock Creek study (0.055 pCi/g) is significantly greater than that of the BSCP study (0.038 pCi/g). However, at these low levels, the error term is approximately equal to one-half the reported result. If the analytical uncertainty, expressed as the 95-percent UCL, is added to these means, there would be overlap of the values. However, because it is not clear whether the higher plutonium-239+240 activity in Rock Creek is due to RFETS industrial activity, total study error, or regional variation, the BSCP data for the 50 remote samples should be used for future RCRA/CERCLA decisions concerning background levels of plutonium.

Strontium-89+90

Both these isotopes of strontium are fission products whose presence in soils is a result of world-wide fallout from above-ground nuclear-weapons testing. Although there is no indication of a strontium-89+90 source from RFETS, it is included in the list of analytes for completeness and comparability with existing data.

Results from parametric ANOVA show that strontium-89+90 activities in Rock Creek samples (mean = 0.618 pCi/g) are significantly higher than those from the 50 remote (Group 2) BSCP samples (mean = 0.254 pCi/g). However, both data sets have large standard deviations, which when added to or subtracted from the means, show an overlap of the values. No local source of these isotopes has been identified.

Because the values of the two means plus or minus one standard deviation overlap, the differences between Rock Creek and BSCP remote data for strontium-89+90 are attributed to analytical or regional variations. Both BSCP and Rock Creek data are considered to represent background levels for strontium-89+90 in surficial soils near RFETS.

4.5 CONCLUSIONS: BSCP AND ROCK CREEK DATA SETS

Despite statistically significant differences between the Rock Creek and BSCP data for some analytes, both the Rock Creek and BSCP data sets are generally considered to be subsets of the overall background population. Tables 5-9 and 5-10 provide the summary statistics for a combined BSCP and Rock Creek data set. As stated in Section 4.1, the outliers for cobalt and manganese were not used to calculate the UTLs for these two metals, but were retained for calculating their summary statistics.

The results of the BSCP study verify the background nature of the Rock Creek area. However, because the BSCP data set is so well documented and because the BSCP work plan was prepared with significant input from the regulatory agencies, it is recommended here that the BSCP data set be used to represent background levels of metals, naturally occurring radionuclides, and fallout radionuclides in surficial soils, to be compared with site data for future decisions concerning the RFETS area. Using one data set (i.e., BSCP) instead of the combined data set (i.e., BSCP + Rock Creek) also eliminates the problem of how to treat the discrepancies in reported detection limits for some analytes in the two studies. However, because the BSCP data basically confirm the validity of the Rock Creek area as representative of background, previous work performed and conclusions based on using the Rock Creek data set as background shall not be redone or re-evaluated.

SECTION 4
TABLES

This page intentionally left blank.

TABLE 4-1

SUMMARY STATISTICS FOR ROCK CREEK GROUP 1 ANALYTES: METALS AND NATURALLY OCCURRING RADIONUCLIDES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation	Tol Factor	99/99 UTL	Units
Aluminum	Lognormal	18	0	8550	17950	12993	2251.5	3.9604	21910	mg/kg
Antimony	X	18	100	4.2U	7.3U	X	X	3.9604	X	mg/kg
Arsenic	Normal	18	0	2.1	8.5	5.82	1.81	3.9604	12.86	mg/kg
Barium	Nonparam	18	0	120	470	195	84.58	3.9604	530.0	mg/kg
Beryllium	Lognormal	18	43	0.44	1.1	0.681	0.119	3.9604	1.1523	mg/kg
Cadmium	Nonparam	17	71	0.3U	1.8	0.732	0.434	4.0367	2.45	mg/kg
Calcium	Lognormal	18	0	2260	8810	5068.1	2220.5	3.9604	13862	mg/kg
**Cesium	Lognormal	18	48	.225U	75U	31.29	30.13	3.9604	831.6	mg/kg
Chromium	Normal	18	0	10.5	20.2	15.029	2.476	3.9604	24.85	mg/kg
*Cobalt	Lognormal	18	0	4.4	24	7.778	4.308	3.9604	24.839	mg/kg
Copper	Normal	18	0	7.7	18.45	12.964	3.629	3.9604	27.34	mg/kg
Iron	Lognormal	18	0	10400	24900	15382	3226.6	3.9604	28160	mg/kg
Lead	Lognormal	18	0	29.35	51	37.535	6.024	3.9604	61.392	mg/kg
Lithium	Normal	18	0	7.1	14.95	10.981	2.273	3.9604	19.97	mg/kg
Magnesium	Lognormal	18	0	1440	5195	2853.3	1050	3.9604	7011.6	mg/kg
*Manganese	Lognormal	18	0	188.5	2220	443.6	457.04	4.1233	2328.1	mg/kg
Mercury	X	18	96	0.03U	0.075U	X	Х	3.9604	X	mg/kg
Molybdenum	X	18	96	0.7U	2.7	X	X	3.9604	X	mg/kg
Nickel	Normal	18	0	7.8	18.7	12.578	3.588	3.9604	26.8	mg/kg
Potassium	Normal	18	0	1950	4205	2977.9	575.43	3.9604	5157	mg/kg
Selenium	Normal	18	22	0.105U	0.76	0.43	0.196	3.9604	1.21	mg/kg
**Silicon	Nonparam	18	0	54.8	1845	780.96	700.48	3.9604	8180	mg/kg
Silver	X	18	100	0.5U	1.45U	X	X	3.9604	X	mg/kg
Sodium	Lognormal	18	43	56.9	192.5	115.37	33.658	3.9604	248.67	mg/kg
Strontium	Lognormal	18	0	20.9	79.05	35.335	13.821	3.9604	90.072	mg/kg
Thallium	Normal	18	65	0.105U	0.41	0.23	0.084	3.9604	0.563	mg/kg
Tin	X	18	39	10.75U	58.5	32.541	12.936	3.9604	83.79	mg/kg
Vanadium	Normal	18	0	20.95	45.6	31.603	60.49	3.9604	55.56	mg/kg
Zinc	Lognormal	18	0	41.4	70.58	55.818	7.784	3.9604	86.646	mg/kg
Radium-226	Lognormal	10	0	0.75	1.1	0.945	0.128	5.0737	1.5944	pCi/g
Radium-228	Normal	10	0	1.3	2.9	2.177	0.531	5.0737	4.874	pCi/g
Uranium-233/234	Lognormal	16	0	0.91	1.472	1.145	0.156	4.1233	1.7882	pCi/g
Uranium-235	Lognormal	16	0	0.011	0.12	0.053	0.033	4.1233	0.1891	pCi/g
Uranium-238	Lognormal	16	0	0.9	1.521	1.183	0.188	4.1233	1.9582	pCi/g

X = Not applicable because > 80% data were non-detects

Min and Max values: highest/lowest detected value or, if no detected values, 1/2 IDL followed by U IDL = instrument detection limit

All UTLs are calculated assuming normal distribution.

[%] Non-detects are calculated from all accepted valid data except equipment rinsates

^{*}Manganese contains 2 outliers, cobalt one; outliers included in summary stats, not included for UTLs

^{**}Cesium and Silicon exhibit bimodal distributions; Cesium bimodal is due to two different IDL's

TABLE 4-2

SUMMARY STATISTICS FOR ROCK CREEK: SUPPORTING DATA TYPES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation	99/99 UTL	Units
Ammonia	Normal*	9	50	0.172U	4.81	1.614	1.56	NC	mg/kg
Carbonate	X	3	100	25U	25U	X	X	X	mg/kg
Nitrate/Nitrite	Normal*	9	0	0.705	4.79	2.319	1.47	NC	mg/kg
Oil & Grease	Normal*	9	10	27U	160	81.7	40.7	NC	mg/kg
pН	Normal*	6	0	6.39	9.1	7.63	0.93	NC	pН
Specific Conductance	Normal*	6	0	11.2	32.75	22.06	9.43	NC	umhos/cm
Total Organic Carbon	Normal*	6	0	9970	19900	15570	3783	NC	mg/kg

X = Not calculated because 100% of data were non-detects.

Normal* = Assumed to be normal distribution for summary statistics of supporting data NC = Not calculated

TABLE 4-3

GROUP 1 ANALYTES WITH GREATER THAN 80% DETECTION FREQUENCY IN BSCP OR ROCK CREEK DATA SETS

			W	Mean	Ma	Maximum		
	moN %	% Non-Detect	(PCi/g c	(pCVg or mg/kg)	(pCi/g	(pCi/g or mg/kg)		
		Rock		Rock		Rock		
Analyte	BSCP	Creek	BSCP	Creek	BSCP	Creek	Different?	Comment
Antimony	100	100	Х	X	0.94U	14.6U	inconclusive	inconclusive BSCP used a lower detection limit
								All RC non-detects had high CRDL for ss (pediment).
				-		150U or		With lower IDL, mean of detects is 2.36 pCi/g and Max
Cesium	100	48	×	2.36	14U	3 (for detects)	inconclusive is 3.	is 3.
Mercury	65	100	0.072	Х	0.12	0.15U	inconclusive	
Molybdenum	91	96	X	X	1.8U	5.8U	inconclusive	
Silver	100	100	×	Х	0.44U	2.9U	inconclusive	
Thallium	100	65	X	0.23	0.445U	0.41	inconclusive	
Tin	91	41	×	32.54	4.85	58.5	yes	Discrepancies in RC detection limit are being investigated
Carbonate	100	100	×	Х	25U	5.5U	uo	

X = Not applicable because there were greater than 80% non-detects.

TABLE 4-4

ROCK CREEK vs BSCP DATA FOR GROUP 1 ANALYTES: RESULTS OF STATISTICAL TESTS

		BSCP			Rock Creek			BSCP an	d Rock Cr	BSCP and Rock Creek Comparison	
Element	Distribution	Shapiro-Wilk	Significance	Distribution	Shapiro-Wilk	Significance Levene	Levene	Significance	Kruskal- Wallis	Significance	Significantly Different?
Aluminum	Normal	0.971	0.746	Lognormal	0.9762	0.867	×	×	6 33	0.012	300
Arsenic	Normal	0.968	0.677	Normal	0.9532	0.473	0.126	0.725	0.1935	90990	Jes
Barium	Normal	0.9128	0.076	Nonparam	0.8917	0.043	×	×	26.49	0	OII
Beryllium	Normal	0.9444	0.35	Lognormal	0.9338	0.288	×	×	0 000	0.877	227
Cadmium	Nonparam	×	X	Nonparam	×	×	×	×	0 0000	0.0070	OII
Calcium	Normal	0.9729	0.778	Lognormal	0.9374	0.323	×	×	11 01	0.2010	OH
Chromium	Normal	0.9874	0.987	Normal	0.9653	0.668	0.562	0.458	18.5	100.0	yes
Cobalt	Normal	0.9876	0.988	Lognormal	0.9578	0.567	×	>	10.0	0.001	yes
Copper	Nonparam	0.858	<.01	Normal	0.9086	0.084	×	*	0 031	0.130	01
Iron	Normal	0.9766	0.851	Lognormal	0.9448	0.393	×	*	177	0.001	2
Lead	Normal	0.9744	608.0	Lognormal	0.9284	0.237	×	*	12.	0.000	yes
Lithium	Lognormal	0.9685	69.0	Normal	0.9707	0.767	* *	*	10.1	0.000	2
Magnesium	Lognormal	0.9289	0.191	Lognormal	0.9818	0.948	×	< >	10.24	0.0002	yes
Manganese	Normal	0.9692	0.704	Lognormal	0.9001	0.0845	×	* >	107	100.0	yes
Nickel	Normal	0.9792	Г	Normal	0 9307	0.250	3,68		1	5565	Jes
Potassium	Normal	0.9795		Normal	0 9562	0 503	2000	0.230	90.00	0.0003	yes
Selenium	Nonparam	0.8759		Normal	0.9261	9120	>	975.0	20.00		yes
Silicon	Normal	0.9587		Nonnaram	0.7887	1	1,	†	7.07	0.010	yes
Sodium	Lognormal	0.9599	T	Lognormal	0.0461			*	4.0/	0.044	yes
E	Lognormal	0.9303	\top	Lognormal	0.9481	0.425	0.162	0.69	53.79	0	yes
Vanadium	Normal	0.9848	T	Normal	0.0502	0.434	0.318	80.0	3.61	0.0655	ou
	Normal	0.9729		Lognormal	0.0772	2000	; ;	515.0	7.0022	0.1115	01
Ra-226	Lognormal	0 9636	+	Logicalita	0.2775	0.000	×	×	3.03	0.082	no
	Normal	00000	1	Lognormai	0.9204	0.3977	0.733	0.399	11.03	0.0025	yes
3	INOITHIAN	0.9552		Normal	0.9435	0.5644	0.566	0.458	18.38	0.002	yes
457	Lognormal	0.746	5	Normal	0.9307	0.3145	×	×	13.066	0.0003	yes
T	Lognormai	0.898	20.0	Lognormal	0.9522	0.5029	10.75	0.002	0.5601	0.4542	2
1	Lognormal	0.962	0.604	Lognormal	0.9567	0.5789	1.58	0.217	2.14	0.1522	2
Ammonia	Normal*	NC		Normal*	NC	NC	NC	NC	0.4441	0.5052	2

Table 4-4. (continued).

		BSCP			Rock Creek			BSCP and	d Rock Cre	BSCP and Rock Creek Comparison	
Element	Distribution	Shapiro-Wilk Signific	ance	Distribution	Shapiro-Wilk Significance Levene Significance	Significance	Levene	Significance	Kruskal- Wallis	Significance	Significantly Different?
Nitrate/Nitrite Normal*	Normal*	NC	NC	Normal*	NC	NC	NC	NC	6.8885	0.0087	yes
Oil & Grease Normal*	Normal*	NC	NC	Normal*	NC	NC	NC	NC	1.5063	0.2197	ou
pH	Normal*	NC	NC	Normal*	NC	NC	NC	NC	9.4137	0.0022	yes
Sp. Conduct. Normal*	Normal*	NC	NC	Normal*	NC	NC	NC	NC	13.375	0.0003	yes
T.O.C	Normal*	NC	NC	Normal*	NC	NC	NC	NC	0.0336	0.8545	ou

Sp. Conduct. = Specific conductivity; T.O.C. = Total Organic Carbon X = Not calculated because nonparametric (determined a priori to be neither normal nor lognormal). NC = not calculated Normal* = assumed to be normal distribution for these purposes

TABLE 4-5
SUMMARY STATISTICS FOR ROCK CREEK, GROUP 2 ANALYTES:
FALLOUT RADIONUCLIDES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation	Tol Fact	99/99 UTL	Units
Americium-241	Lognormal	14	0	0.0095	0.036	0.02	0.007	4.3372	0.05036	pCi/g
Cesium-134	Nonparam	9	0	0.071	0.1	0.084	0.012	5.3889	0.148667	pCi/g
Cesium-137	Lognormal	12	0	0.71	2.5	1.41	0.49	4.633	3.68017	pCi/g
Plutonium-239/240	Lognormal	18	0	0.026	0.1	0.055	0.014	3.9604	0.110446	pCi/g
Strontium-89/90	Normal	9	0	0.095	1	0.618	0.298	5.3889	2.23892	pCi/g

All UTLs are calculated assuming normal distribution.

TABLE 4-6

ROCK CREEK VS BSCP DATA FOR GROUP 2 ANALYTES: RESULTS OF STATISTICAL TESTS

		BSCP			Rock Creek			BSC	BSCP and Rock Creek Comparison	k Comparison	
									Kruskal-		Significantly
Analyte	Distribution	Analyte Distribution Shapiro-Wilk Significance Distrib	Significance	ution	Shapiro-Wilk Significance Levene Significance	Significance	Levene	Significance	Wallis	Significance	Different?
Am-241	Nonparam	0.9359	0.0174	Lognormal	0.9783	0.933	11.32	0.001	10.82	0.001	Ves
Cs-134	Nonparam	0.8144	<.01	Nonparam	0.8227	0.045	20.3	0	14.3	0 0000	MAS
Cs-137	Lognormal	0.962	0.246	Lognormal	0.974	0.9065	-	0.321	0.026	0.872	22
Pu-239/240	Lognormal	0.9677	0.3672	Lognormal	9096.0	0.5842	0.1263	0.723	14.11	0.0004	Ves
Sr-89/90	Lognormal	0.9747	0.5255	Normal	0.9613	0.7840	NA	NA	11.32	0.0008	yes

TABLE 4-7
REGIONAL ^{239/240}Pu CONCENTRATIONS IN SURFACE SOILS

Range (pCi/g)	Reference	Notes
0.012 - 0.063	Poet and Martell (1972) and Schmidt (1994)	0-1 cm depth, Loveland, Brighton, Cripple Creek areas
0 0.06	CDH - Terry (1991) and Schmidt (1994)	Eight Colorado communities, 0-0.64 cm depth, 2 mm sieve
0.024 - 0.038	McArthur and Miller (1989)	6 Colorado western slope sites, 0-5 cm depth, assumed soil density of 1 g/cm³ for range calculation
0.014 - 0.077	Lawton (1989) unpublished	8 communities in eastern half of Colorado, 0-5 cm depth
0.0012 - 0.081	Purtymun et al. (1990)	Soils in northern New Mexico and southern Colorado, 1981, 1983, 1986, 0-5 cm depth
0.031 - 0.091	Webb et. al. (1994)	10 background locations from northeast of Ft. Collins to Colorado Springs, 0-3 cm depth

TABLE 4-8
CORRELATION COEFFICIENTS FOR BSCP METALS

Metal	% Detects	Al, r-value	Fe, r-value	Mn, r-value	Si, r-value
Aluminum	100	1.00	0.79	0.31	0.69
Antimony*	4	Not calc.	Not calc.	Not calc.	Not calc.
Arsenic	100	0.33	0.50	0.48	0.13
Barium	100	0.64	0.65	0.43	0.37
Beryllium	100	0.90	0.32	0.39	0.68
Cadmium	61	0.19	0.31	0.13	0.19
Calcium	100	0.79	0.44	0.06	0.61
Cesium*	0	Not calc.	Not calc.	Not calc.	Not calc.
Chromium	100	0.96	0.83	0.44	0.63
Cobalt	100	0.66	0.57	0.65	0.58
Copper	100	0.85	0.80	0.45	0.62
Iron	100	0.79	1.00	0.55	0.45
Lead	100	0.28	0.44	0.37	0.14
Lithium	100	0.86	0.80	0.41	0.43
Magnesium	100	0.89	0.67	0.11	0.62
Manganese	100	0.31	0.55	1.00	0.05
Mercury	35	0.19	0.05	0.22	0.02
Molybdenum*	9	Not calc.	Not calc.	Not calc.	Not calc.
Nickel	100	0.88	0.76	0.47	0.69
Potassium	100	0.91	0.77	0.36	0.54
Selenium	61	0.09	0.05	0.12	0.20
Silicon	100	0.69	0.45	0.05	1.00
Silver*	0	Not calc.	Not calc.	Not calc.	Not calc.
Sodium	100	0.46	0.38	0.11	0.32
Strontium	100	0.80	0.54	0.01	0.70
Thallium*	0	Not calc.	Not calc.	Not calc.	Not calc.
Tin*	9	Not calc.	Not calc.	Not calc.	Not calc.
Vanadium	100	0.90	0.77	0.57	0.61
Zinc	100	0.86	0.75	0.32	0.61

^{*} Correlation coefficients not calculated for analytes with low detection rates.

Al, r-value: Results of linear regression analysis, using aluminum (Al) concentration as the independent variable.

Fe, r-value: Results of linear regression analysis, using iron (Fe) concentration as the independent variable.

Mn, r-value: Results of linear regression analysis, using manganese (Mn) concentration as the independent variable.

Si, r-value: Results of linear regression analysis, using silicon (Si) concentration as the independent variable.

TABLE 4-9

SUMMARY STATISTICS FOR THE SIMPLY COMBINED BSCP AND ROCK CREEK DATA SETS FOR GROUP 1 ANALYTES: METALS AND NATURALLY OCCURRING RADIONUCLIDES

		Count	% Non-				Standard	Tol	99/99	
Analyte	Distribution	(n)	Detect	Min	Max	Mean	Deviation	Fact	UTL	Units
Aluminum	Normal	38	0	4050	17950	11545	3155	3.2804	21894.66	mg/kg
Antimony	X	38	98	0.19U	0.626	X	X	3.2804	X	mg/kg
Arsenic	Normal	38	0	2.1	9.6	5.96	1.89	3.2804	12.16	mg/kg
Barium	Lognormal	38	0	45.7	470	146.3	75.37	3.2804	355.83	mg/kg
Beryllium	Normal	38	21	0.24	0.96	0.67	0.137	3.2804	1.12	mg/kg
Cadmium	Lognormal	37	55	0.295U	2.3	0.722	0.436	3.2975	2.10	mg/kg
Calcium	Lognormal	38	0	1450	8810	3963	1919	3.2804	9704.01	mg/kg
Cesium	X	38	80	.255U	3	X	X	3.2804	X	mg/kg
Chromium	Normal	38	0	5.5	20.2	13.06	3.25	3.2975	23.72	mg/kg
*Cobalt	Lognormal	38	0	3.4	24	7.52	3.21	3.2804	13.03	mg/kg
Copper	Normal	38	0	5.2	18.45	12.95	3.07	3.2804	23.02	mg/kg
Iron	Lognormal	38	0	7390	24900	13891	3271	3.2804	24874.82	mg/kg
Lead	Normal	38	0	8.6	53.3	35.4	8.8	3.2804	64.27	mg/kg
Lithium	Lognormal	38	0	4.8	14.95	9.25	2.66	3.2804	18.45	mg/kg
Magnesium	Normal	38	0	188.5	2800	1217	873	3.2804	4080.79	mg/kg
*Manganese	Lognormal	38	0	129	2220	335	330.1	3.2975	596.52	mg/kg
Mercury	X	38	80	0.03U	0.12	X	X	3.2804	X	mg/kg
Molybdenum	Х	38	94	0.29U	2.7	X	X	3.2804	X	mg/kg
Nickel	Normal	38	0	3.8	18.7	11.03	3.42	3.2804	22.25	mg/kg
Potassium	Normal	38	0	1110	4205	2495	688	3.2804	4751.92	mg/kg
Selenium	Normal	38	30	0.105U	1.4	0.538	0.27	3.2804	1.42	mg/kg
Silicon	Normal	38	0	54.8	1845	1098	578.7	3.2804	2996.47	mg/kg
Silver	X	38	100	0.19U	1.45U	X	X	3.2804	Х	mg/kg
Sodium	Lognormal	38	22	43.8	192.5	87.36	36.86	3.2804	204.70	mg/kg
Strontium	Lognormal	38	0	9.6	79.05	31.71	12.4	3.2804	72.83	mg/kg
Thallium	X	33	83	.105U	0.41	X	X	3.2804	X	mg/kg
Tin	Lognormal	38	65	1.35U	58.5	16.54	17.71	3.3754	174.17	mg/kg
Vanadium	Normal	38	0	10.8	45.8	29.63	7.23	3.2804	53.35	mg/kg
Zinc	Normal	38	0	21.1	75.9	52.53	10.63	3.2804	87.40	mg/kg
Radium-226	Normal	30	0	0.1	1.1	0.728	0.212	3.4465	30.00	pCi/g
Radium-228	Normal	30	0	0.2	2.9	1.63	0.628	3.4465	30.00	pCi/g
Uranium-233/234	Lognormal	36	0	0.66	3.1	1.12	0.438	3.3154	1.64	pCi/g
Uranium-235	Lognormal	36	0	0.011	0.12	0.053	0.026	3.3154	0.41	pCi/g
Uranium-238	Lognormal	36	0	0.74	2.6	1.13	0.36	3.3154	9.36	pCi/g

X = Not applicable because >80% of data were non-detects

S.D. = Standard Deviation

^{*} Cobalt contains 2 outlier and manganese contains 1; outliers included in Summary Statistics but not in UTLs

TABLE 4-10

SUMMARY STATISTICS FOR THE SIMPLY COMBINED BSCP AND ROCK CREEK DATA SETS: SUPPORTING DATA TYPES

Analyte	Distribution	Count (n)	% Non- Detect	Min	Max	Mean	Standard Deviation	99/99 UTL	Units
Ammonia	Normal*	29	41	.172U	7	1.9	1.78	NC	mg/kg
Carbonate	Normal*	23	100	5U	25U	X	X	NC	mg/kg
Nitrate/Nitrite	Normal*	29	0	0.705	7	3.48	1.78	NC	mg/kg
Oil & Grease	Normal*	29	3	.027U	160	90.57	27.64	NC	mg/kg
pН	Normal*	26	0	6	9.1	6.65	0.72	NC	pН
Specific Conductance	Normal*	26	0	0.1	0.53	0.211	0.089	NC	mmhos/cm
Total Organic Carbon	Normal*	26	0	4920	19900	16003	2907	NC	mg/kg
***% Clay	Normal*	20	0	7	36	20.45	8.62	NC	%
***% Sand	Normal*	20	0	22	76	43.93	15.27	NC	%
***% Silt	Normal*	20	0	18	45.5	35.76	7.52	NC	%
***Bulk Density	Normal*	20	0	0.9	1.2	0.92	0.07	NC	g/cm^3

4-41

*** No Rock Creek data available for these parameters

Normal*: Supporting data were assumed to be normal distribution for summary stats

NC: Not calculated

X = not applicable because > 80% of data were non-detects

This page intentionally left blank.

SECTION 4
FIGURES

This page intentionally left blank.

ALUMINUM

ANTIMONY

Final Report May 1995 Geochemical Characterization of Background Surface Soils:

Background Soils Characterization Program

Rocky Flats Environmental Technology Site

ARSENIC

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

BARIUM

BERYLLIUM

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

CADMIUM

CALCIUM

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

CESIUM

CHROMIUM

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

COBALT

COPPER

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

IRON

LEAD

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

LITHIUM

MAGNESIUM

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

MANGANESE

MERCURY

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

MOLYBDENUM

NICKEL

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

POTASSIUM

SELENIUM

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

SILICON

SILVER

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

SODIUM

STRONTIUM

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

THALLIUM

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

VANADIUM

ZINC

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

RADIUM-226

RADIUM-228

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

URANIUM-233+234

URANIUM-235

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

URANIUM-238

AMERICIUM-241

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

CESIUM-134

CESIUM-137

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

PLUTONIUM-239+240

STRONTIUM-89+90

Geochemical Characterization of Background Surface Soils: Background Soils Characterization Program Rocky Flats Environmental Technology Site

5.0 BIBLIOGRAPHY

- Arnalds, O., N.H. Cutshall, and G.A. Nielsen, 1989. Cesium-137 in Montana Soils, Health Physics, 57(6), 955-958.
- ASTM, 1980. Standard Practice for Dealing with Outlying Observations, Designation: E 178-80.
- Bernhardt, D.E., 1976. Evaluation of Sample Collection and Analysis Techniques for Environmental Plutonium, U.S. EPA, Office of Radiation Programs, Las Vegas, Nevada.
- Birkeland, P.W., 1984. Soils and Geomorphology, Oxford University Press. 372 pp.
- ChemRisk, Inc., 1994. Project Task 5 Estimating Historical Emissions From Rocky Flats 1952 1989, Prepared for the Colorado Department of Health.
- DOE, 1980. Final Environmental Impact Statement: Rocky Flats Plant Site, Golden, Jefferson County, Colorado, Volumes 1, 2, and 3, U.S. Department of Energy Report, Washington, DC, DOE/EIS-0064.
- DOE, 1993. Background Geochemical Characterization Report, September 1993.
- DOE, 1994. Background Soils Characterization Plan, U.S. Department of Energy, Rocky Flats Plant, Golden, Colorado, RFP/ERM-94-00022
- Dragun, J., 1988. The Soil Chemistry of Hazardous Materials, The Hazardous Materials Control Research Institute, Greenbelt, Maryland, 458 pp.
- Drees, L.R., L.P. Wilding, N.E. Smeck, and A.L. Senkayi, 1989. Silica in soils: Quartz and disordered silica polymorphs, In: *Minerals in Soil Environments*, J.B. Dixon and S.B. Weed (eds.), pp. 913-974.
- EG&G, 1988. Health Physics Manual of Good Practices for Uranium Facilities, EG&G NTIS DE88-013620.
- EG&G, 1990. Rocky Flats Plant Site-Wide Quality Assurance Project Plan for CERCLA RI/FS and RCRA RFI/CMS Activities.
- EG&G, 1992a. RFI/RI Final Work Plan for OU3, February 1992.
- EG&G, 1992b. Containerization, Preserving, Handling, and Shipping of Soil and Water Samples, EG&G EMD Manual Operation SOP, Rocky Flats Plant, 5-21000-OPS FO.13, Rev 2.

5-1

- EG&G, 1992c. Base Laboratory Work, EG&G EMD Manual Operation SOP, Rocky Flats Plant, 5-21000-OPS FO.19, Rev 2.
- EG&G, 1993. Surface Soil Sampling, EG&G EMD Operations Procedure, Rocky Flats Plant, 4-E42-ER-OPS GT.08, Rev 3.
- EG&G, 1994a. Field Data Management, EG&G EMD Manual Operation SOP, Rocky Flats Plant, 5-2100-OPS FO.14, Rev 2.
- EG&G, 1994b. Evaluation of ERM Data for Usability in Final Reports, Rocky Flats Plant, 2-G32-ER-ADM-08.02, Rev 0.
- EG&G, 1995a. Geologic Characterization Report (March, 1995)
- EG&G, 1995b. Hydrogeologic Characterization Report (April, 1995)
- EG&G, 1995c. General Equipment Decontamination, EG&G EMD Field Procedures SOP, Rocky Flats Plant, 5-21000-OPS FO.3.
- EG&G, 1995d. Groundwater Geochemistry Report (January, 1995).
- Eisenbud, M., 1987. Environmental Radioactivity: from Natural, Industrial, and Military Sources, Third Edition, Academic Press, New York, New York, 475 pp.
- EPA, 1992. Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Addendum to Interim Final Guidance, US Environmental Protection Agency, Washington, D.C.
- Frielander, G., J.W. Kennedy, J.M. Miller, 1964. *Nuclear and Radiochemistry*, John Wiley & Sons, Inc. 585 pp.
- Gilbert, R.O., 1987. Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold Company, New York, New York, pp. 320.
- Gilbert, R.O., and J.C. Simpson, 1992. Statistical Methods for Evaluating the Attainment of Cleanup Standards, Volume 3: Reference-Based Standards for Soils and Solid Media, Pacific Northwest Laboratory, Richland, Washington.
- Gile, L.H., F.F. Peterson, and R.B. Grossman, 1965. The K horizon: A master soil horizon of carbonate accumulation, *Soil Science*, b. 99, pp. 74-82.
- Gile, L.H., F.F. Peterson, and R.B. Grossman, 1966. Morphological and genetic sequences of carbonate accumulation in desert soils, *Soil Science*, v. 101, p. 347-360.

- Glasstone, S., and W.H. Jordan, 1980. Nuclear Power and its Environmental Effects, American Nuclear Society, La Grange Park, Illinois, pp. 395.
- GRRASP, 1988a. U.S. EPA Contract Laboratory Program Statement of Work for Inorganics Analysis, Multi-Concentration, July 1988.
- GRRASP, 1988b. U.S. EPA Contract Laboratory Program Statement of Work for Organics Analysis, Multi-Media, Multi-Concentration, February 1988.
- Hardy, E.P., P.W. Krey, and V.L. Volchok, 1973. Global Inventory and Distribution of Fallout Plutonium, *Nature*, 241:444-445.
- Helsel, D.R., 1990. Less than obvious: statistical treatment of data below the detection limit, Environmental Science & Technology, v.24, n.12, pp. 1766-1774.
- Hem, J.D., 1992. Study and Interpretation of the Chemical Characteristics of Natural Water, U.S. Geological Survey Water-Supply Paper 2254. 263 pp.
- Hsu, P.H., 1989. Aluminum hydroxides and oxyhydroxides, In: *Minerals in Soil Environments*. J.B. Dixon and S.B. Weed (eds.) Soil Science Society of America Book Series, 1244 pp.
- Huang, P.M., 1989. Feldspars, olivines, pyroxenes, and amphiboles, In: *Minerals in Soil Environments*, J.B. Dixon and S.B. Weed (eds.), pp. 975-1050.
- Interagency Agreement (IAG), 1991. Rocky Flats Interagency Agreement between the State of Colorado, the Environmental Protection Agency, and the Department of Energy, January, 1991.
- Krauskopf, K.B., 1979. Introduction to Geochemistry, McGraw-Hill Company, 617 pp.
- Krey, P.W., E.P. Hardy, H. Volchok, L. Toonkel, R. Knuth, M. Coppes, and T. Tamura, 1976. *Plutonium and Americium Contamination in Rocky Flats Soils 1973*, HASL-304.
- Lawton, 1989. Unpublished data, 1989 Remote (background) soil sample analysis, Rockwell, Inc. internal memo to T. Greengard.
- Litaor, M.I., 1993. EG&G Preliminary Draft, Phase II RFI/RI Report: 903 Pad, Mound, and East Trenches Area, Operable Unit No. 2, Volume 8, Appendix D: Investigations of Actinide Distribution, Fate and Transport in Soils.
- Litaor, M.I., D. Ellerbroek, L. Allen, E. Dovala, 1994. Draft: A Comprehensive Appraisal of Plutonium-239+240 in Soils of Operable Units 1, 2, &3: A Basis For Risk Analysis, EG&G draft manuscript for inclusion in the forthcoming OU3 Final Report.

- McArthur, R.D., and F.L. Miller, 1989. Off-Site Radiation Exposure Review Project: Phase II Soils Program, USDOE/NV/10384-23 Rev. Desert Research Institute, University of Nevada System, Water Resources Center, EG&G Report #45064.
- McKenzie, R.M., 1989. Manganese oxides and hydroxides, In: *Minerals in Soil Environments*, J.B. Dixon and S.B. Weed (eds.) Soil Science Society of America Book Series, 1244 pp.
- Muller, R.N. and D.G. Sprugel, 1977. Distribution of local and stratospheric plutonium in Ohio soils, *Health Physics*, 33:405-409.
- Myrick, T.E., B.A. Berven, and F.F. Haywood, 1983. Determination of concentration of selected radionuclides in surface soil in the U.S., *Health Physics*, 45(3), p. 631-642.
- Perkins, R.W., and C.W. Thomas, 1980. Worldwide Fallout, Transuranic Elements in the Environment, W.C. Hanson (ed.), pp. 53-82, DOE/TIC-22800, EG&G report 100333.
- Poet, S.E., and E.A. Martell, 1972. Plutonium-239 and americium-241 contamination in the Denver area, *Health Physics*, Pergamon Press, 23, pp. 537-548. Repository Document AC-641.
- Purtyman, W.D., R.J. Peters, M.N. Maes, 1990. Plutonium Deposition and Distribution from Worldwide Fallout in Northern New Mexico and Southern Colorado, Los Alamos National Laboratory Report #LA-11794-MS.
- Rai, D., and J.A. Kittrick, 1989. Mineral equilibrium and the soil system, In: Minerals in Soil Environments, J.B. Dixon and S.B. Weed (eds.), pp. 161-198.
- Ritchie, J.C., and J.R. McHenry, 1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review, *Journal of Environmental Quality*, 19:215-233.
- Rosner, B., 1975. On the detection of many outliers, *Technometrics*, 17:221-227.
- Salomons, W., and U. Forstner, 1984. Metals in the Hydrocycle, Springer-Verlag. 347 pp.
- SCS, 1980. Golden Area Soil Survey.
- SCS, 1975. Boulder County Map.
- Schmidt, D.W., 1994. Draft Report In The Rocky Flats Nuclear Weapons Plant Dose Reconstruction and Risk Characterization Project, Phase II: Toxicity Assessment and Risk Characterization, Technical Memorandum: Evaluation of Background Concentrations of Plutonium in Soils Around the Rocky Flats Plant, Radiological Assessments Corporation, Neeses, South Carolina.

- Schwertmann, U. and R.M. Taylor, 1989. Iron oxides, In: *Minerals in Soil Environments*, J.B. Dixon and S.B. Weed (eds.) Soil Science Society of America Book Series, 1244 pp.
- Scott, G.R., 1960. Subdivision of the quaternary alluvium east of the Front Range near Denver, Colorado, Geological Society of America Bulletin, v. 71, no. 10, pp. 1541-1543.
- Severson, R.C. and H.A. Tourtelot, 1994. Assessment of Geochemical Variability and a Listing of Geochemical Data for Surface Soils of the Front Range Urban Corridor, Colorado, U.S. Geological Survey Open-File Report 94-648. 120 pp.
- Shacklette, H.T., and J.G. Boerngen, 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States, U.S. Geological Survey Professional Paper 1270, Washington.
- Sill, C.W., 1982. Some Deficiencies in Analyzing Leachates and Reporting Results, Nuclear and Chemical Waste Management 3:141-147 (1982).
- Terry, R.W., 1991. Contamination of Surface Soil in Colorado by Plutonium, 1970 1989: Summary and Comparison of Plutonium Concentrations in Soil in the Rocky Flats Plant Vicinity and Eastern Colorado, Central Rocky Mountain Chapter/Health Physics Society, Annual Technical Meeting, April 22, 1991.
- Webb, S.B., J.M. Stone, S.A. Ibrahim, and F.W. Whicker, 1994. Preliminary Draft: The Spatial Distribution of Plutonium in Soil Near the Rocky Flats Plant, Colorado State University manuscript.
- Woolson, E.A., 1983. Emissions, cycling and effects of arsenic in soil ecosystems, In: Biological and Environmental Effects of Arsenic, B.A. Fowler (ed), Elsevier Press, 281 pp.

APPENDIX A

MEASUREMENT OF ²⁴⁰PU/²³⁹PU AND ²⁴¹PU/²³⁹PU ATOM RATIOS IN SOIL SAMPLES REPRESENTATIVE OF GLOBAL FALLOUT IN COLORADO

This page intentionally left blank.

MEASUREMENT OF ²⁴⁰Pu/²³⁹Pu AND ²⁴¹Pu/²³⁹Pu ATOM RATIOS IN SOIL SAMPLES REPRESENTATIVE OF GLOBAL FALLOUT IN COLORADO

FINAL REPORT

INTEGRATED CONTRACTOR ORDER (ICO) NO 261299RL5 LOS ALAMOS NATIONAL LABORATORY-RAL-033-94

PRINCIPAL INVESTIGATORS

D. W. Efurd, D. J. Rokop and F. R. Roensch

EXECUTIVE SUMMARY

This study was initiated to determine the variation in the 240 Pu/239 Pu and 241Pu/239Pu atoms ratio in soil samples representative of global fallout in Colorado. Twelve soil samples were collected from locations believed to be representative of global fallout. The plutonium was separated from 10 g aliquots and analyzed by alpha spectroscopy to determine the ²³⁹⁺²⁴⁰Pu activities. Next, the samples were analyzed by thermal ionization mass spectrometry to determine the 240Pu/239Pu isotope ratios. The ²⁴⁰Pu/²³⁹Pu atom ratios in the samples ranged from a low of 0.143 \pm 0.006 to a high of 0.170 \pm 0.003. The average 240 Pu/ 239 Pu atom ratio for the 12 samples was 0.155 \pm 0.019. These values are significantly different than the 240Pu/239Pu atom ratio of 0.065 that is representative of plutonium processed at RFP. These results indicate that measurement of the 240Pu/239Pu atom ratios in soil samples can be used to separate the plutonium into its global fallout component and its RFP component. The average 241Pu/239Pu atom ratio measured in this study was 0.0030 + 0.0004. These data indicate that the samples collected for this study have 241Pu/239Pu atom ratios consistent with global fallout plutonium.

INTRODUCTION

The Rocky Flats Plant (RFP) is a Department of Energy (DOE) facility where plutonium components were manufactured for nuclear weapons. During plant operations radioactivity was inadvertently released into the biosphere. Because of RFP's location with regard to areas of public access, the release of plutonium and other radionuclides is of concern to DOE and the public. The combinations of regional, physical, ecological and other characteristics make environmental monitoring of plutonium around the site a necessity. Interpretation of the significance of the analytical results derived from these monitoring activities is difficult because the plutonium was not introduced from a single source. Studying the amounts and origins of plutonium in the terrains surrounding RFP and other locations in Colorado will give scientists and engineers better ability to identify the impact of the former production activities of RFP. It is necessary to understand the variations and contributions from the sources of the different isotopic compositions of plutonium in order to explain the meaning of local plutonium data. Quantitative measurements of 238Pu and 239+240Pu by pulse height alpha spectroscopy alone does not ascertain the origin of the plutonium. However, the "fingerprinting" of plutonium by measuring the ²⁴⁰Pu/²³⁹Pu isotopic composition by thermal ionization mass spectrometry measurement techniques (TIMS) is capable distinguishing and quantifying the contributions of the different sources of plutonium in a single sample.

The primary source of plutonium in most locations in Colorado is global fallout from atmospheric testing of nuclear devices. Areas surrounding RFP may be composed of global fallout or a mixture of RFP plutonium and global fallout. Global fallout plutonium is a complicated mixture whose isotopic composition was influenced by: the type of nuclear device being tested, the location of the test (Nevada Test Site, Peoples' Republic of China, the former USSR, etc.), the mechanisms of atmospheric transport and diffusion processes coupled with various fractionation processes. The isotopic composition of global fallout varies from location to location. Therefore, the isotopic composition of fallout in Colorado must be precisely determined before the potential contribution of plutonium released from RFP can be accurately assessed at any given location.

RESULTS AND DISCUSSIONS

Mr. Jim Whiting, EG&G Rocky Flats, selected twelve soil samples collected from locations believed to be representative of global fallout in Colorado. Ten gram aliquots of each sample were traced with ultrapure 242Pu and analyzed for plutonium content by TMA Thermal Analytical Inc. They electroplated the plutonium on stainless steel planchetts and measured the concentrations by alpha pulse height analyses. Next, the planchetts were shipped to Los Alamos National Laboratory (LANL) for TIMS analyses. The plutonium was removed from the planchetts with a mixture of hydrofluoric and nitric acids. The plutonium was purified by anion exchange chromatography and analyzed by TIMS. The results are reported in Table I.

		Table !	[.		
240Pu/239Pu	Atom	Ratios	and	Alpha	Activities

Sample	240Pu/239Pu	Mass Spec Calc	Alpha PHA
Number	Atom Ratio	239+240Pu pCi/g	239+240Pu pCi/g
SS00156EG	0.163 ± 0.035	0.035 <u>+</u> 0.003	0.035 ± 0.005
SS00157EG	0.156 ± 0.026	0.057 ± 0.004	0.055 ± 0.007
SS00130EG	0.153 ± 0.004	0.049 ± 0.001	0.052 ± 0.006
SS00104EG	0.160 ± 0.005	0.061 ± 0.001	0.054 ± 0.006
SS00091EG	0.169 ± 0.004	0.030 ± 0.001	0.031 ± 0.004
SS00102EG	0.154 ± 0.011	0.044 ± 0.001	0.043 ± 0.005
SS00099EG	0.140 ± 0.008	0.068 ± 0.001	0.065 ± 0.006
SS00135EG	0.151 ± 0.002	0.088 ± 0.001	0.087 ± 0.008
SS00138EG	0.148 ± 0.007	0.092 ± 0.002	0.099 ± 0.009
SS00149EG	0.143 ± 0.006	0.053 ± 0.001	0.051 ± 0.006
SS00152EG	0.155 ± 0.004	0.036 ± 0.001	0.034 ± 0.005
SS00141EG	0.170 ± 0.003	0.010 ± 0.001	0.014 ± 0.003
2873-20	0.001 ± 0.001	0.929 ± 0.015	0.912 ± 0.108
2873-21	0.295 ± 0.198	0.001 ± 0.001	0.006 ± 0.008
2873-22	0.154 ± 0.011	0.032 ± 0.001	0.028 ± 0.005

The Alpha PHA 239+240Pu pCi/g values reported in Table I are the alpha spectroscopy results obtained by TMA Thermal Analytical Inc. The Mass Spec Calc ²³⁹⁺²⁴⁰Pu pCi/g values are the equivalent alpha activities calculated from TIMS analyses. The method used to calculate the ²³⁹⁺²⁴⁰Pu specific activities from the TIMS data is described below. TMA Thermal Analytical Inc. traced each 10 g aliquot with 5.41 dpm of ultra-pure ²⁴²Pu, i. e., National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 4334E. The ²⁴²Pu alpha activity added to each sample was converted to atoms of ²⁴²Pu. TIMS measured the ²³⁹Pu/²⁴²Pu and ²⁴⁰Pu/²⁴²Pu isotope ratios in each sample and calculated the number of atoms of ²³⁹Pu and ²⁴⁰Pu present. Next, the atoms of ²³⁹Pu and ²⁴⁰Pu were converted to ²³⁹⁺²⁴⁰Pu alpha activities. The half-lives used to convert between specific activities and atoms are listed in Table II. The specific ²³⁹⁺²⁴⁰Pu activities measured by alpha spectroscopy and those calculated from TIMS analyses are in excellent agreement.

All uncertainties in Table I are reported at the 95% confidence interval. Sample numbers 2873-20, 2873-21 and 2873-22 are QA/QC samples produced by TMA Thermal Analytical Inc.

	Table II. Half-Lives used to Convert Atoms to Activities
Isotope	Half-Life (years)
242Pu 239Pu 240Pu	376000 ± 2000 24119 ± 26 6564 ± 11

The plutonium isotope ratios in Standard Reference Material 4334E were measured at LANL. The results are reported in Table III. These data indicate that the addition of 5.41 dpm of the ²⁴²Pu isotope dilution tracer contributed less than 0.00001 pCi ²³⁹⁺²⁴⁰Pu to each sample. The Certificate of Analyses for SRM-4334E is included as Appendix 1.

Table III. Plutonium Isotope Ratios In SRM 4334E

239Pu/242Pu	240Pu/242Pu	241 Pu/242 Pu	244Pu/242Pu
3.2 x 10 ⁻⁸	5 x 10 ⁻⁸	4.7 x 10 ⁻⁶	3 x 10 ⁻⁸

Reagent blanks were analyzed concurrently with the samples. The results are reported in Table IV.

	Table	IV.	
LANL	Proces	sing	Blank

Sample	240Pu/239Pu	Mass Spec Calc	Blank Contribution
Number	Atom Ratio	239+240Pu pCi	239+240Pu pCi/g
RB-1	0.2 ± 0.2	0.0009 ± 0.0003	0.00009 ± 0.00003
RB-2	0.3 ± 0.4	0.0007 ± 0.0003	0.00007 ± 0.00003

No plutonium was detected in the processing blanks analyzed at LANL. The estimates reported in Table IV were derived using the conservative estimate that all events detected by the spectrometer's pulse counting circuitry were attributable to plutonium. We cannot distinguish plutonium from isobaric interferences at these levels. These data confirm that the processing blanks introduced by preparing the samples for TIMS analyses were negligible. There was over 100 times more plutonium detected in the soil samples than in the processing blanks.

The operating characteristics of LANL's mass spectrometers were verified by analyzing a series of 1-ng aliquots of National Bureau of Standards (NBS) Standard Reference Material 947 - Plutonium Isotopic Standard. The results are summarized in Table V. These data illustrate that the instruments are capable of precisely measuring the 240 Pu/239 Pu atom ratios. The Certificate of Analyses for SRM-947 is included as Appendix 2.

Table V.

Analysis of NBS Standard Reference Material 947

Plutonium Isotopic Standard

Analysis Number	240Pu/239Pu Atom Ratio*				
Analysis Number	- of the Atom Ratio				
1	0.2412				
2	0.2412				
3	0.2411				
4	0.2412				
5	0.2411				
6	0.2412				
7	0.2412				
8	0.2412				
9	0.2412				
Average =	0.2412 ± 0.00001				
Certified Value	0.2412				

^{*} Data decay corrected to October 13, 1994.

The ²⁴¹Pu/²³⁹Pu atom ratios were measured in 4 of the samples submitted for TIMS analyses. The results are reported in Table VI.

		Ta	ble	VI.	_		
241 Pu/239 Pu	Atom	Ratios	In	Soils	Collected	in	Colorado

Sample Number	²⁴¹ Pu/ ²³⁹ Pu Atom Ratio
SS00135EG	0.0033 ± 0.0006
SS00138EG	0.0030 ± 0.0005
SS00149EG	0.0030 ± 0.0002
SS00152EG	0.0028 ± 0.0015

Krey et. al., reported that the 241 Pu/ 239 Pu atom ratio in global fallout was 0.0086 ± 0.0034 in 1971. The half-life of 241 Pu is 14.35 ± 0.10 years. Therefore, the 241 Pu/ 239 Pu atom ratio in global fallout should be 0.0027 in 1994. The average 241 Pu/ 239 Pu atom ratio measured in this study was 0.0030 ± 0.0004 . These data indicate that the samples

collected for this study have ²⁴¹Pu/²³⁹Pu atom ratios consistent with global fallout plutonium.

CONCLUSIONS

- 1. The ²⁴⁰Pu/²³⁹Pu atom ratio in global fallout is significantly different than the ²⁴⁰Pu/²³⁹Pu atom ratio in the materials processed at RFP.
- 2. The 240 Pu/ 239 Pu atom ratio in global fallout in Colorado varies as a function of location. The 240 Pu/ 239 Pu atom ratios in the samples measured in this study ranged from a low of 0.143 ± 0.006 to a high of 0.170 ± 0.003 . The average 240 Pu/ 239 Pu atom ratio for the 12 samples was 0.155 ± 0.019 .
- 3. The ²³⁹⁺²⁴⁰Pu activity levels as measured by alpha spectroscopy and calculated by TIMS are in excellent agreement.
- 4. The average 241 Pu/ 239 Pu atom ratio measured in this study was 0.0030 ± 0.0004 .

REFERENCES

1. P. W. Krey, E. P. Hardy, C. Pachucki, F. Rourke, J. Coluzza and W. K. Benson, "Mass Isotopic Composition of Global Fall-Out Plutonium in Soil," In Proceedings of a Symposium on Transuranium Nuclides in the Environment, San Francisco, 17-21 November 1975 (1976).

ACKNOWLEDGMENTS

Jim Whiting, EG&G Rocky Flats Plant, conceived, established and guided this study. Without his efforts the study would not have come to fruition. Duane Catlett, Rocky Flats Program Office, served as the Program Manager. Sandy Wagner, Rocky Flats Program Office, served as the Project Manager. Rodney Melgard and Nahid Mahani, TMA Thermo Analytical Inc., provided technical information that facilitated analyses of the samples.

Appendix 1.

Standard Reference Material 4334E

National Institute of Standards & Technology

Certificate - 27 S SENG M

Standard Reference Material 4334E Radioactivity Standard

Radionuclide

Plutonium-242

Source identification

4334E

Source description

Liquid in flame-sealed NIST borosilicate-glass ampoule (1)*

Solution mass

Approximately 5.8 grams

Solution composition

Plutonium-242 in 5 mol·L¹ nitric acid (2)

Reference time

1200 EST, 18 December 1989

(Purification time)

26.37 Bq-g-1

Overall uncertainty

1.12 percent (3)

Radionuclidic impurities

Radioactivity concentration

See Table 1 (4)

Half life

 $(3.733 \pm 0.012) \times 10^{5} \text{ years}^{(5)}$

Measuring instrument

Two $4\pi\alpha$ liquid-scintillation counters, a calibrated germanium detector system, and a silicon surface-barrier detector

This standard reference material was prepared in the Physics Laboratory, Ionizing Radiation Division. Radioactivity Group, J.M. Robin Hutchinson, Acting Group Leader.

Gaithersburg, MD January 1993 William P. Reed, Chief Standard Reference Materials Program

*Notes on back

<u>NOTES</u>

Approximately five milliliters of solution. Ampoule specifications:

body diameter 16.5 = 0.5 mm

wall thickness 0.60 = 0.04 mm

barium content less than 2.5 percent

lead oxide content less than 0.02 percent

other heavy elements trace quantities

- Solution density is 1.170 ± 0.001 g·mL⁻¹ at 21.65 °C.
- The overall uncertainty was formed by taking three times the quadratic combination of the standard deviations of the mean, or approximations thereof, for the following:

a) alpha-particle-emission-rate measurements	0.02 percent
b) background	0.03 percent
c) livetime	0.05 percent
d) detection efficiency	0.25 percent
e) count-rate-vs-energy extrapolation to zero energy	0.25 percent
f) half life	0.00 percent
g) gravimetric measurements	0.10 percent
h) radionuclidic impurities	0.00 percent

- Values for ³⁴Pu + ³⁴Am and for ³⁹Pu + ²⁶Pu were calculated based upon measurements performed at the Lawrence Livermore National Laboratory (LLNL) shortly after purification of the ²⁴Pu in December of 1989. Values for ³⁹Pu + ²⁶Pu and for ³⁴Pu were calculated based upon measurements performed at the National Institute of Standards and Technology (NIST) in August of 1990.
- Evaluated Nuclear Structure Data File (ENSDF), February 1990.

For further information please contact Dr. Larry Lucas at NIST.

Telephone: (301) 975-5546 FAX: (301) 926-7416

TABLE I

RELATIVE ACT	IVITY OF RADIONUC 1200 EST. 18 D	LIDIC IMPURITIES A DECEMBER 1989 (*)	AT REFERENCE TIME
		RELATIVE ACTIVIT	Y AS DETERMINED BY
RADIONUCLIDE	(YEARS)	LLNL	NIST
nabri	87.74 ± 0.04 (8)	³⁸ Pu + ³⁴¹ Am <0.000 025 (€)	
בייףע	24119 = 26.51		
:nbr	6570 ± 6 31	שקש: + שקיב כ0.000 (°) כ	³⁹ Pu + ³⁴⁰ Pu <0.000 043 ^(c)
[:] "Pu	14.35° ± 0.10 °°		$0.162 \pm 0.002(1\sigma)^{-4}$
¹⁴² Pu	373300 ± 1200 (b)	1.000 000	1.000 000
²⁴¹ Am	432.2 ± 0.5 (5)	³⁸ Pu + ²⁴¹ Am <0.000 025 (6)	0.000 000 assumed

- Reference time is the time of purification of the plutonium-242.
- (b) Evaluated Nuclear Structure Data File (ENSDF), February 1990.
- Using alpha-particle spectrometry, no alpha-particle emission was detected that could reliably be ascribed to these radionuclides. The value shown is an estimated upper limit based upon background and counting statistics.
- The plutonium-241 relative activity at reference time was calculated from a gamma-ray measurement of the americium-241 ingrowth as of 18 August 1990.

Appendix 2.

Standard Reference Material 947

National Bureau of Standards Certificate of Analysis Standard Reference Material 947

Plutonium Isotopic Standard

	238pu	239 Pu	240 Pu	241 Pu	242 Pu
Atom Percent	0.296 =0.006	75.696 =0.022	18.288 =0.022	4.540 * ±0.006	1.180 ±0.004
Weight percent	0.294	75.600	18.341	4.572	1.193

The value for plutonium-241 will slowly decrease (half life 14.7 years), and the other values inproportionately, because of the decay of plutonium-241 to americium-241. The values given are for Octob 1971, and were obtained on samples from which the americium was removed.

The material consists of plutonium sulfate tetrahydrate and prepared from highmetal by the Wadco Corporation for the Atomic Energy Commission. The atomic weight of plutonium is calculated to be 239.359, using the nucldic masses 238.0495; 239.0521: 240.0 241.0567; and 242.0587.

The values are derived from measurement made at the National Bureau of Standards, usi triple-filament thermal-ionization mass spectrometer equipped with dc amplifier circuits. The r. ²³⁸ Pu to ²⁴⁹ Pu, ²³⁹ Pu to ²⁴⁰ Pu, and ²⁴² Pu to ²⁴⁰ Pu were determined solutions processed to remove the americium and any uranium present.

The limits indicated or the isotopic composition are at least as large as the 95 per confidence level for a single determination. Since high-purity plutonium isotopes were not avail in quantity to propare synthetic mixtures, the accuracy is dependent on uranium and pluton exhibiting similar behavior. The observed mass spectrometer data was corrected for a discrimination effects using the data determined by the analysis of several uranium stand analyzed under similar conditions. The magnitude of the correction is about 0.10 percent per a unit.

The mass spectrometry measurements were made by E. L. Gamer, using solutions prepared L. A. Machian.

Washington, D. C. 20234 December 3, 1971 J. Paul Cali, Chief
Office of Standard Reference Mate

APPENDIX B RAW DATA

Appendix B contains the raw data for SVOCs, pesticides and PCBs, inorganics, naturally occurring radionuclides, and fallout radionuclides. These spreadsheets include the following:

- Location identification number (Location)
- Site code (Site)
- Sample identification number (Sample#)
- Laboratory Quality Control Code (QC code)
- Analyte name (Analyte)
- Laboratory Result (Result1)
- Instrument Detection Limit (IDL)
- Laboratory Qualifier (Qual)
- Validation Qualifier (Val)
- Reasons for Validation Qualifiers (R1, R2, or R4)
- Result used in the Statistical Calculations (Result2)
- Unit of Measurement (Unit)
- Contract Required Detection Limit (CRDL)
- Type of Analyte (i.e. surrogate (SUR), Tentatively Identified Compound (TIC), or target analyte) (Type2). A blank space in the Type2 column indicates that the chemical was a target analyte.

The original samples are identified as "REAL" in the QC column, whereas duplicate samples are identified as "DUP" and rinsates are identified as "RNS". If the result in the Result1 column was a non-detect (qualified as "U"), then the Result2 column contains a value that is half of the instrument detection limit. Results for rinsates, surrogate analytes, and TICs were not used in the statistical analyses.

This page intentionally left blank.

SEN	ATT.	IN	TA	TH	EC
OE.	/11 1	w			

This section includes the raw data spreadsheets for semivolatile compounds. They are organized as indicated in the introduction of Appendix B.

SEMI-VOLATILE COMPOUNDS: RAW DATA

een a			_						,		_									_	,						_						_						_		_
																							CLL																		
	2	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330		10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
2222	NG/L	UG/KG	UG/KG	UG/KG	UG/KG	DZ//DA	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NG/U	UG/KG																
	2	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	360	- 2	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355
																												1													
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- -	>	Λ	Λ	Λ .	۸	Λ	^	>	>	>	Λ	Λ	Λ	Λ	Λ	Λ	^	Λ	۸	۸	۸	Z	۸	۸	>	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ .	^	۸	Λ	۸	۸	۸	Λ
		n	U	U	U	n	n	n	n	n	U	U	Ω	U	n	U	n	n	n	U	U	U	ſ	U	n	n	U	U	U	Û	U	U	U	n	Ω	U	U	U	U	Ú	U
***	9	0/9	089	089	089	069	069	069	069	069	069	069	007	700	710	710	710	710	730	730	730	160	***	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710
N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1	10	670	089	680	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	360	10	019	089	680	089	069	069	069	069	069	069	069	700	700	710	710	710	710
				1,2,4-TRICHLOROBENZENE	1,2,4-TRICHLOROBENZENE	1,2,4-TRICHLOROBENZENE	1,2,4-TRICHLOROBENZENE	1,2,4-TRICHLOROBENZENE	1,2,4-TRICHLOROBENZENE		1,2,4-TRICHLOROBENZENE	1,2-Benzenedicarboxylic acid	1,2-DICHLOROBENZENE																												
2000	RNS	REAL	REAL	REAL	REAL.	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP	REAL																				
83141978	SS00124EG	SS00106EG	SS00122EG	SS00105EG	SS00123EG	SS00125EG	\$S00112EG	SS00116EG	SS00117EG	SS00118EG	SS00120EG	SS00103EG	SS00115EG	SS00110EG	SS00111EG	SS00113EG	SS00107EG	SS00119EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00105EG	SS00124EG	SS00106EG	SS00122EG	SS00105EG	SS00123EG	SS00125EG	SS00103EG	SS00120EG	SS00118EG	SS00117EG	SS00116EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	SS00119EG	SS00107EG	SS00111EG
	ы	ā	D5	D2	ኤ	М	9/	PS	ы	ΛI	P2	P7	P4	V4	VS	<i>L</i> Λ	Λ2	Ы	D3	V3	D6	D4	D2	P7	DI	DS	D2	P 8	P7	М	P2	V1	РЗ	P5	9/	٧4	P4	٧7	P1	V2	VS
LOCATION	SS107294	SS105494	SS107094	SS105394	SS107194	SS107294	SS106094	SS106494	SS106594	SS106694	SS106894	SS107294	SS106394	SS105894	SS105994	SS106194	SS105594	SS106794	SS105694	SS105794	SS106294	SS106994	SS105394	SS107294	SS105494	SS107094	SS105394	SS107194	SS107294	SS107294	SS106894	SS106694	SS106594	SS106494	SS106094	SS105894	SS106394	SS106194	SS106794	SS105594	SS105994

SEMI-VOLATILE COMPOUNDS: RAW DATA

														Γ																											
100 M (4.00)	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330
88 × 7.00	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG										
*******	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345		345		345	Г	350	350	355

	^	۸	_ \	V	Λ	Λ	_ ^	۸	^	Λ	Λ	۸	۸	۸	Λ	^	Λ .	Λ	Λ	۸	۸	Λ .	۸	Λ	۸	Λ	Λ	Λ	۸	۸	^	۸	۸	^	 >	>	^	۸	^	۸	^
**	U	n	U	U	n	U	U	U	n	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	n [U	U	U	U	U	U	U	U	n	n	n	U	U	U [U	n
	730	730	730	760	9	070	089	089	089	069	069	069	069	069	069	069	700	200	710	710	710	710	730	730	730	760	10	019	089	089	089	069	069	069	069	069	069	069	200	007	710
	0	2	0	160	10	0,	01	01	0)						L		-	_			0		
E.N. 1936 (A)	730	730	730	76		670	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	0/9	980	089	089	069	069	069	069	069	069	069	700	700	710
AKAINAN .	ROBENZENE	ROBENZENE	ROBENZENE	OBENZENE	OBENZENE	ROBENZENE	ROBENZENE	ROBENZENE	OBENZENE	ROBENZENE	OBENZENE	OBENZENE	OBENZENE	OBENZENE	3-DICHLOROBENZENE	OBENZENE	,4-DICHLOROBENZENE	OBENZENE	OBENZENE																						
		1,2-DICHLO	1,2-DICHLO	1,2-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,3-DICHLOF	1,3-DICHLOF	1,3-DICHLOR	1,3-DICHLOROBENZENE	1,3-DICHLOR	1,3-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,3-DICHLOR	1,3-DICHLOROBENZENE	1,4-DICHLOROBENZENE	1,4 DICHLOROBENZENE	1,4-DICHLOROBENZENE	1,4 DICHLOROBENZENE	1,4 DICHLOR	1,4 DICHLOROBENZENE	1,4-DICHLOROBENZENE																		
2000	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL
83.1010.00	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	\$\$00123EG	SS00122EG	SS00105EG	SS00116EG	SS00103EG	SS00120EG	SS00118EG	SS00125EG	SS00117EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	SS00119EG	SS00111EG	SS00107EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00103EG	SS00120EG	SS00118EG	SS00117EG	SS00116EG	SS00112EG	SS00125EG	SS00115EG	SS00110EG	SS00113EG
	ĵ	3	ß	7	B	ā	3	DŞ	D2	P5	В	72	7	ы	33	γ	V4	P4	٨2	Ы	VS	V2	V 3	D3	26	D4	М	ΙΩ	DS	35	D2	P7	P2	V1	ВЗ	PS	9A	М	P4	V4	V7
TOCATION	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS106494	SS107294	SS106894	SS106694	SS107294	SS106594	SS106094	SS105894	SS106394	SS106194	SS106794	SS105994	SS105594	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS107294	SS106894	SS106694	SS106594	SS106494	SS106094	SS107294	SS106394	SS105894	SS106194

SEMI-VOLATILE COMPOUNDS: RAW DATA

000024	,	_		,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																		,							 ,		1	-	_	_	1			
																														SUR											
	OSS OSS	330	330	330	330	330	330	50	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	20	330	330	330	330	330	330	330	330	330	330	330
_	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	%REC																																
	333	355	355	365	365	365	380	25	1650	1700	1700	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	1750	1750	1750	1800	1800	1850	1900	57	99	70	77	79	62	80	81	81	82	84	85
																																					52				
:	>	>	>	Λ	^	Λ	Λ	Λ	>	۸	۸	Λ	Λ	\	۸	N	Λ .	Λ	Λ	Λ	۸	۸	Λ	Λ	^	Λ	Λ	Λ	۸	Z	Z	Z	Y	Z	2	Z	Z	Y	Z	Z	2
	1		n	Ω	U	U	U	Ω	n	U	U	U	U	U	U	U	U	U	n	U	U	U	n	Û	n	Û	U	U	U												
) 	25	710	730	730	730	09/	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	:	:	:		***		444			I	111	***
N. S.	710	710	710	730	730	730	092	90	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	57	99	70	77	79	79	80	81	81	82	84	85
BANKA .	1,4-DICHLOROBENZENE	2,4,5-TRICHLOROPHENOL		2,4,5-TRICHLOROPHENOL	2,4,5-TRICHLOROPHENOL	2,4,5-TRICHLOROPHENOL	2,4,5-TRICHLOROPHENOL	2,4,6-TRIBROMOPHENOL																																	
	KEAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL																			
010 to 1000	SSWIIVEG	SS00111EG	SS00107EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00117EG	SS00123EG	SS00112EG	SS00122EG	SS00118EG	SS00116EG	SS00105EG	SS00125EG	SS00119EG	SS00103EG	SS00120EG	SS00115EG	SS00107EG	SS00113EG	SS00111EG	SS00110EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00122EG	SS00121EG	SS00123EG	SS00107EG	SS00114EG	SS00106EG	SS00123EG	SS00123EG	SS00112EG	SS00105EG	SS00110EG
2	=	45	V2	<u>0</u> 6	V3	D3	D4	1.4	DI	ы	9d	9/	DS	V1	PS	D2	P7	P1	Ы.	P2	P4	V2	V7	VS	V4	V3	D3	De	D4	М	DS	D4	P6	V2	D6	D1	P6	P6	9/	D2	V4
8818898	33100/94	SS105994	SS105594	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS106594	SS107194	SS106094	SS107094	SS106694	SS106494	SS105394	SS107294	SS106794	SS107294	SS106894	SS106394	SS105594	SS106194	SS105994	SS105894	SS105794	SS105694	SS106294	SS106994	SS107294	SS107094	SS106994	SS107194	SS105594	SS106294	SS105494	SS107194	SS107194	SS106094	SS105394	SS105894

SEMI-VOLATILE COMPOUNDS: RAW DATA

	2	X	<u>~</u>	<u>ب</u>	2	<u>≃</u>	×	~	~	~	~	~		Γ	Γ	<u> </u>	Γ	Γ	Γ			Γ	Γ		Γ	Γ	Γ	Γ	Γ-						T "	Γ	<u> </u>	Γ	П	Γ	П
3.00	SUR	SUR	SUR	SUR	SUR	SUR	-	SUR	SUR	SUR	SUR	SUR				_	_					_			_	_	_	_							_						
	330	330	330	330	330	330	L	330	330	_	L	L.	10	330		330	330	L			330	330	330	330	330	L	330	330	330	330	330	330	330	330	2	330	330	330	330	330	330
	%REC	7/5/1	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG											
	86	86	87	87	88	86	92	93	94	94	95	96	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345
												52																													
	\dashv	Н	Н									Н						L																		Н			Ц	Н	
	Z	Z	Z	Z	Z	2	Z	Z	Z	Z	Z	Z	Λ	Λ	Λ	Λ	Λ		^	Λ	^	^	Λ	^	^	^	>	Λ	^	Λ	>	>	^	^	Λ	>	^	Λ	^	>	^
													n	n	Ū	n	Ω	Ω	n	Û	Ω	Ω	n	U	Ω	Ω	n	Û	Ω	Ω	n	n	Ω	Ω	Ω	D	Ω	Ω	Ω	Ω	Э
	:	:		ï	:	E 1	***		**	11	***	**	10	019	089	089	089	069	069	069	069	069	069	069	001	001	710	710	710	710	730	730	730	09/	10	0/9	680	089	089	069	069
N. P. S.	86	86	87	87	88	89	92	93	94	94	95	96	10	670	680	680	680	069	069	069	690	690	690	690	700	700	710	710	710	710	730	730	730	760	10	019	680	680	089	069	069
9889	2,4,6-TRIBROMOPHENOL	2,4,6-TRICHLOROPHENOL		2,4,6-TRICHLOROPHENOL		2,4,6-TRICHLOROPHENOL	2,4,6-TRICHLOROPHENOL		2,4,6-TRICHLOROPHENOL					2,4,6-TRICHLOROPHENOL	2,4,6-TRICHLOROPHENOL	2,4-DICHLOROPHENOL																									
	DOP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP										
87 (BY Y)	SS00103EG	SS00108EG	SS00113EG	SS00120EG	SS00109EG	SS00111EG	SS00119EG	SS00117EG	SS00116EG	SS00115EG	SS00118EG	SS00125EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00116EG	SS00120EG	SS00125EG	SS00118EG	SS00117EG	SS00103EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	SS00119EG	SS00111EG	SS00107EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00118EG	SS00103EG
	E	63	Į.	22	Λ3	V S	FI	3	PS	P4	V.	Ы	ы	DI	2	DS	D2	PS	12	М	V1	33	ы	9,	V 4	P4	٧.	ΕĪ	٧2	۸2	2	K 3	ß	<u>D</u> 4	P7	D1	D2	P6	DS	V1	М
KOLYMON	2810/294	SS105694	SS106194	SS106894	SS105794	SS105994	SS106794	SS106594	SS106494	SS106394	SS106694	SS107294	SS107294	SS105494	SS107194	SS107094	SS105394	SS106494	SS106894	SS107294	SS106694	SS106594	SS107294	SS106094	SS105894	SS106394	SS106194	SS106794	SS105994	SS105594	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106694	SS107294

SEMI-VOLATILE COMPOUNDS: RAW DATA

330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	2	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	20	1600	<u>8</u>	1600
UG/KG	UG/L	UG/KG	UG/L	UG/KG	UG/KG	UG/KG																																		
345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	25	1650	1700	1700
																														-							\dashv	-	-	
۸	Λ	۸	۸	۸	Λ	Λ	۸	Λ	Λ	Λ	Λ	Λ	Λ	^	Λ	Λ	۸	۸	Λ	Λ	>	>	Λ	Λ	>	Λ	>	^	>	>	>	^	Λ	^	>	>	>	>	>	>
n	U	U	U	U	U_	U	U	Ω	n	n	U	Ω	n	U	U	U	U	n	n	U	n	U	U	n	Ω	n	Ω	U	Û	D	D	D	U	U	Þ	Þ	n	Þ	n	=
069	069	069	069	069	700	007	710	710	710	710	730	730	730	760	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	90	3300	3400	3400
069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	50	3300	3400	3400
2,4-DICHLOROPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4 DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4 DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4 DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4 DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DIMETHYLPHENOL	2,4-DINITROPHENOL	2,4-DINITROPHENOL	2,4-DINITROPHENOL	1) A DINITEOPHENOI														
REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	DEAI																											
SS00112EG	SS00120EG	SS00116EG	SS00117EG	SS00125EG	SS00110EG	SS00115EG	SS00119EG	SS00113EG	SS00111EG	SS00107EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00118EG	SS00116EG	SS00103EG	SS00120EG	SS00117EG	SS00125EG	SS00112EG	SS00110EG	SS00115EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	C600117EC
9/	72	PS	22	Ы	۷4	P4	ы	77	VS	V2	90	Λ3	23	D4	Ы	ΙΩ	D2	2	DS	1>	P5	Ы	72	E	Ы	9/	٧4	P4	V2	P1	L/A	V5	90	V3	D3	D4	М	DI	D2	2
SS106094	SS106894	SS106494	SS106594	SS107294	SS105894	SS106394	SS106794	SS106194	SS105994	SS105594	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106694	SS106494	SS107294	SS106894	SS106594	SS107294	SS106094	SS105894	SS106394	SS105594	SS106794	SS106194	SS105994	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	0010000

SEMI-VOLATILE COMPOUNDS: RAW DATA

um-	_					_			_	_	_		_	_	,			,	,			_	,	_	,								_		_						
2000	000	8	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10
******	4	4	_	UG/KG	UG/L	UG/KG	UG/L																																		
	1/00	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	T	1750	1750	1800	1800	1850	1900	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5
	1	\downarrow																																							
13	<u> </u> 	\ >	>	^	۸	۸	Λ	۸	Λ	۸	Λ	۸	۸	V	۸	۸	Λ	Λ	۸	Λ	Λ		۸	V	Λ	۸	V	Λ	۸	Λ	Λ	Λ	۸	۸	Λ	^	Λ	۸	^	^	^
	 		5	D	U	U	U	U	U	n	n	n.	U	U	n	n	ū	n	n l	U	n	n	U	n	U	n	U	U	U	n	n	n	U	U	Ω	U	U	U	U	U	n
	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	10	0/9	089	089	089	069	069	069	069	069	069	069	700	007	710	710	710	710	730	730	730	092	10
	<u>``</u>	ř	ř	ň	3,	35	3.	3.	3;	35	3:	3;	35	3.	30	30	3.	38		9	9	9	9	9	9	9	9	9	9	°	7	7	7	7	1	7	7	7	7	7	\exists
E BASS	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	10
***	2,4-DINII ROPHENOL	2,4-DINITROPHENOL	2,4 DINITROPHENOL	2,4-DINITROPHENOL	2,4-DINITROTOLUENE	2,4 DINITROTOLUENE	2,4-DINITROTOLUENE	2,6-DINITROTOLUENE																																	
	KEAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL	RNS																											
	SS00123EG	SS00112EG	SS00122EG	SS00118EG	SS00116EG	SS00119EG	\$\$00125EG	SS00103EG	SS00120EG	SS00107EG	SS00113EG	SS00111EG	SS00110EG	SS00115EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00120EG	SS00117EG	SS00116EG	SS00125EG	SS00118EG	SS00103EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	SS00111EG	SS00107EG	SS00119EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG
į	€ ;	۶	D2	ī	PS	P1	P7	М	P2	V2	V7	VS	V4	P4	D3	V3	D6	D4	М	DI	DS	P6	D2	P2	РЗ	PS	P7	V1	P7	V6	V4	P4	V7	VS	V2	P1	D6	V3	D3	D4	P7
NOR A SOCI	5510/194	SS106094	SS107094	SS106694	SS106494	SS106794	SS107294	SS107294	SS106894	SS105594	SS106194	SS105994	SS105894	SS106394	SS105694	8S105794	SS106294	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS106894	SS106594	SS106494	SS107294	SS106694	SS107294	SS106094	SS105894	SS106394	SS106194	SS105994	SS105594	SS106794	SS106294	SS105794	SS105694	SS106994	SS107294

B-10

330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
UG/KG	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG																			
V 335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365
Λ	۸	۸	Λ	Λ	۸	۸	۸	۸	۸	۸	Λ	۸	Λ	Λ	Λ	^	۸	^	^	>	>	۸	Λ	۸	Λ	۸	Λ	>	Λ	Λ	۸	V	Λ	Λ	۸	۸	۸	۸	Λ
U	U	U	U	U	U	U	U	U	U	U	U	n	n	U	U	U	U	Û	U	D	Û	U	U	U	U	U	Û	n	Û	Û	U	U	U	Ω	U	U	U	n	n
0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	0/9	089	089	089	069	069	869	069	069	069	069	200	700	710	710	710	710	730
019	089	680	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	0/9	680	089	680	069	069	069	069	690	069	069	700	700	710	710	710	710	730
2,6-DINITROTOLUENE		2-CHLORONAPHTHALENE	2-CHLORONAPHTHALENE	2-CHLORONAPHTHALENE	2-CHLORONAPHTHALENE	2-CHLORONAPHTHALENE	2-CHLORONAPHTHALENE		2-CHLORONAPHTHALENE																														
REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL																					
SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00118EG	SS00103EG	SS00112EG	SS00120EG	SS00116EG	SS00117EG	SS00125EG	SS00110EG	SS00115EG	SS00119EG	SS00113EG	SS00111EG	SS00107EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00118EG	SS00117EG	SS00116EG	SS00112EG	SS00103EG	SS00125EG	SS00120EG	SS00115EG	SS00110EG	SS00119EG	SS00107EG	SS00113EG	SS00111EG	SS00114EG
DI	D2	P6	D5	V1	ы	9/	72	ፖ	В	M	٧4	P4	P1	V7	VS	V2	<u>S</u>	V3	D3	74	М	Δ	P6	DS	D2	V1	33	Z.	9/	М	М	72	P4	V4	P1	V2	V7	VS	9Q
SS105494	SS105394	SS107194	SS107094	SS106694	SS107294	SS106094	SS106894	SS106494	SS106594	SS107294	SS105894	SS106394	SS106794	SS106194	SS105994	SS105594	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS106694	SS106594	SS106494	SS106094	SS107294	SS107294	SS106894	SS106394	SS105894	SS106794	SS105594	SS106194	SS105994	SS106294

SEMI-VOLATILE COMPOUNDS: RAW DATA

SEMI-VOLATILE COMPOUNDS: RAW DATA

																									SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR
3833	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
5000X	UG/KG	UG/KG	UG/L	UG/KG	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC																				
	365	380	5	335	340	340	340	345	345	345	345		345		350	350	_	355	355	T		365		380	51	65	74	11	81	81	82	82	82	82	82	83	84	84	84	84	84
	1																											52													
	\ > ;	,	^	^	>	_ ^	/	^	Λ .	Λ		/	_	_ ^	_ /		_	_				,	,	,			,	-					,								_
WW.	+	\dashv					^		_	_	^ ·	Λ	Λ		Λ	Λ	^	^	^	^	^	^	^	Λ	Z	Z	Z	Z	Z	Z	Α	Z	Z Z	Z	7	Z	Z	7	Z	7	
<u>.</u>	1	4		7	Þ	U	U	U	n l	n l	U	U	n	U	U	n	n	n	Ū	U	n	U	U	U									Ц								_
	S (8	의	920	980	680	089	9	069	069	9	900	069	969	700	700	710	710	710	710	730	730	730	760	:	***		11.11	=	:	:	:	:	:	:			1111	:	:	:
	/30	760	10	0.29	089	680	089	069	069	069	069	069	069	069	700	001	710	710	710	710	730	730	730	160	51	65	74	11	81	81	82	82	82	82	82	83	84	84	84	84	84
7 211 0000	2-CHLOKONAPHIHALENE	2-CHLORONAPHTHALENE	2-CHLOROPHENOL		2-FLUOROBIPHENYL	2-FLUOROBIPHENYL						2-FLUOROBIPHENYL																													
10000	KEAL	KEAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL																										
2010010022	3300100EG	2500121EG	SS00124EG	SS00106EG	SS00105EG	SS00122EG	SS00123EG	SS00125EG	SS00116EG	SS00117EG	SS00120EG	SS00112EG	SS00103EG	SS00118EG	SS00115EG	SS00110EG	SS00111EG	SS00107EG	SS00113EG	SS00119EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00122EG	SS00121EG	SS00125EG	SS00106EG	SS00120EG	SS00123EG	SS00103EG	SS00113EG	SS00114EG	SS00107EG	SS00112EG	SS00109EG	SS00108EG	SS00115EG	SS00105EG	SS00117EG
2	3 2	2	E	ā	D2	DS	P 6	Ы	PS	33	72	γ6	М	V1	P4	٧4	VS	V2	7.7	P1	D6	٨3	D3	D4	Ы	D5	D4	Ы	ī	2	2	Ы	7.7	<u>D</u> 6	V2	9/	٧3	D3	P4	D2	13
104.4 BDN	53102034	33100994	SS107294	SS105494	SS105394	SS107094	SS107194	SS107294	SS106494	SS106594	SS106894	SS106094	SS107294	SS106694	SS106394	SS105894	SS105994	SS105594	SS106194	SS106794	SS106294	SS105794	SS105694	SS106994	SS107294	SS107094	SS106994	SS107294	SS105494	SS106894	SS107194	SS107294	SS106194	SS106294	SS105594	SS106094	SS105794	SS105694	SS106394	SS105394	SS106594

SEMI-VOLATILE COMPOUNDS: RAW DATA

2 44 34	SUR	SUR	SUR	SUR	SUR	SUR	SUR										-																								
	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330
a N	%REC	%REC	%REC	%REC	%REC	%REC	%REC	NG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	DB/BD	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG							
10.50	84	84	85	86	89	86	06	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345
	22																																								
	7	Ϋ́	Z	2	Z	Z	Z	V	۸	V	۸	۸	Λ	Λ	Λ	^	۸	Λ	Λ	۸	Λ	Λ	Λ	Ā	Λ	Λ	۸	۸	Λ	Λ	^		^	۸	۸	Λ	Λ	۸	Λ	۸	^
								U	U	U	U	Ω	U	U	Û	U	n	U	U	U	U	U	U	U	n l	U	U	U	D	U	n	n	U	U	U	U	n	n l	n l	U]	n
	+	.,	1		##		ин	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	070	089	089	089	069	069	069	069	069	069	069
***	+	1															-												`								Ĭ				
RESELECT	2	26	85	86	86	88	06	10	9/9	089	089	089	069	069	9	069	069	069	069	700	700	710	710	710	710	730	730	730	760	2	929	989	980	089	069	069	069	069	069	069	069
2 17 10000	2-FLUOKOBIPHEN YL					2-FLUOROBIPHENYL	2-FLUOROBIPHENYL	2-METHYLNAPHTHALENE		2-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE			2-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE		2-METHYLNAPHTHALENE	2-METHYLPHENOL	2-METHYLPHENOL	2-METHYLPHENOL	2-METHYLPHENOL	2-METHYLPHENOL		2-METHYLPHENOL	2-METHYLPHENOL	2-METHYLPHENOL	2-METHYLPHENOL	2-METHYLPHENOL	2-METHYLPHENOL								
DEAT	KEAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL.	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL.	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL
950013350	3500123EG	SS00123EG	SS00110EG	SS00111EG	SS00118EG	SS00119EG	SS00116EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00118EG	SS00125EG	SS00112EG	SS00103EG	SS00120EG	SS00116EG	SS00117EG	SS00110EG	SS00115EG	SS00119EG	SS00111EG	SS00107EG	SS00113EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00103EG	SS00120EG	SS00118EG	SS00117EG	SS00116EG	SS00112EG	SS00125EG
ž	2	٤	44	\$	5	E	æ	E	百	2	22	D2	5	B	9	E	22	Σ	2	44	<u>P</u> 4	ī	VS	72	2	2	Λ3	D3	D4	A	ā	22	2	D2	B	22	5	2	Σ.	8	Ы
Se107104	55107194	3810/194	SS105894	SS105994	SS106694	SS106794	SS106494	SS107294	SS105494	SS107194	SS107094	SS105394	SS106694	SS107294	SS106094	SS107294	SS106894	SS106494	SS106594	SS105894	SS106394	SS106794	SS105994	SS105594	SS106194	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS107294	SS106894	SS106694	SS106594	SS106494	SS106094	SS107294

SEMI-VOLATILE COMPOUNDS: RAW DATA

330	330	330	330	330	330	330	330	330	330	20	1600	1600	1600	1600	1600	168 8	168	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600 000	1600	1600	1600	1600	2	330	330	330	330			330	330
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/L	UG/KG																											
350	350	355	355	355	355	365	365	365	380	25	1650	1700	1700	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	1750	1750	1750	1800	1800	1850	1900	5	335	340	340	340	345	345	345	345
																																								_
۸	>	٨	Λ	Λ	^	Λ	>	>	>	>	^	>	Λ	^	>	^	^	^	>	Λ	^	Λ	Λ	^	Λ	^	>	>	>	۸	Λ	^	^	>	۸	Λ	^	Λ	^	>
Ω	þ	Ú	U	U	U	n	n	Û	n	Ω	Ω	n	U	U	n	n	U	Ω	n	U	U	Ū	U	U	U	n	Û	Ω	U	U	U	U	U	U	n	n	n	U	n	=
90/	8,	710	710	710	710	730	730	730	760	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	10	019	089	089	089	069	069	069	9
7007	700	710	710	710	710	730	730	730	760	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	01	0.09	089	089	089	069	069	069	009
2-METHYLPHENOL	2-METHYL PHENOL	2-METHYLPHENOL	2-NITROANILINE	2-NITROPHENOL	2 MITTOURIENO!																																			
RFAL	RFAI	REAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	1000																									
SSOOTOFG	SSOOTISEG	SS00113EG	SS00119EG	SS00111EG	SS00107EG	SS00114EG	SS00108EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00117EG	SS00123EG	SS00122EG	SS00112EG	SS00118EG	SS00116EG	SS00105EG	SS00125EG	SS00103EG	\$S00120EG	SS00119EG	SS00113EG	SS00111EG	SS00110EG	SS00107EG	SS00115EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00117EG	SS00116EG	SS00103EG	000000000000000000000000000000000000000
7/	24	· A	E	VS	72	90	23	V3	7	Ы	ī	E	2	25	9%	IA	25	D2	B	М	22	ā	27	\ \ \	V4	V2	P4	X 3	D3	څ	7	Ы	ā	22	S	22	Ξ	25	B	
56105804	88106394	\$\$106194	\$\$106794	SS105994	SS105594	SS106294	SS105694	SS105794	\$\$106994	SS107294	SS105494	SS106594	\$\$107194	\$\$107094	SS106094	\$\$106694	SS106494	SS105394	SS107294	\$\$107294	\$\$106894	\$\$106794	\$\$106194	\$\$105994	\$\$105894	SS105594	\$\$106394	SS105794	\$\$105694	\$\$106294	\$\$106994	\$\$107294	SS105494	\$\$107194	\$\$107094	\$5105394	\$\$10,6594	\$\$106494	86107204	3310127

SEMI-VOLATILE COMPOUNDS: RAW DATA

													TIC																							TIC				
330	330	330	330	330	330	330	330	330	330	330	330	330		20	099	099	98	099	099	099	98	099	98	8	98	099	099	099	099	099	099	099	099	099	099		50	1600	1600	1600
11CAKG	11G/KG	IIG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UGV	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/KG	UG/KG
345	345	345	350	350	355	355	355	355	365	365	365	380	850	10	650	650	650	650	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	750	480	25	1650	1700	1700
× -																																								
^	-	>	>	>	>	^	>	^	>	\ ^	^	Λ .	Z		Λ	V	V	V	Λ	Λ .	Λ .	۸	۸	Λ	۸	V	V	۸	Λ	Λ	۸	۸ ا	Λ		V	Z	V	۸	^	
=			þ	Ω	n	n	Ω	n	n	Ω	n l	U	J	U	U	U	U	U	U	U	n_n	U	U	U	U	U	U	U	U	U	U	U	U	U	U	J	U]	U	U	11
069	8	86	80,	700	710	710	710	710	730	730	730	09/		70	1300	1300	1300	1300	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1400	1500	44	50	3300	3400	3400
069	069	069	700	700	710	710	710	710	730	730	730	09/	850	20	1300	1300	1300	1300	1400	1400	1400	1400	1400	1400	1400	1400		1400	1400	1400		1400	1400	1400	1500	480	50		3400	3400
ATTENDED AND THE TENT OF THE T	2-NITROPHE		П									L 2-NITROPHENOL		٦			L 3,3:-DICHLOROBENZIDINE			L 3,3'-DICHLOROBENZIDINE		L 3,3'-DICHLOROBENZIDINE						1									S 3-NITROANILINE	3-NITROANI		L 3-NITROANILINE
REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	and	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL
SS00118EG	SS00125EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	\$\$00111EG	SS00107EG	SS00119EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00123EG	SS00124EG	SS00122EG	SS00123EG	SS00105EG	SS00106EG	SS00103EG	SS00125EG	SS00120EG	SS00119EG	SS00118EG	SS00115EG	SS00114EG	SS00113EG	SS00112EG	SS00111EG	SS00110EG	SS00109EG	SS00108EG	SS00107EG	SS00117EG	SS00116EG	SS00121EG	SS00123EG	SS00124EG	SS00106EG	SS00118EG	SS00123EG
۲.	P7	9/	٧4	P4	77	VS	۸2	Ы	<u>D</u>	ς2	D3	7	2	B	22	æ	D2	ā	ы	E	72	ы	ΛI	75	26	77	9	VS	44	23	23	72	2	Z	D4	2	E	ā	5	2
SS106694	SS107294	SS106094	SS105894	SS106394	SS106194	SS105994	SS105594	SS106794	SS106294	SS105794	SS105694	SS106994	SS107194	SS107294	SS107094	SS107194	SS105394	SS105494	SS107294	SS107294	SS106894	SS106794	SS106694	SS106394	SS106294	SS106194	SS106094	SS105994	SS105894	SS105794	SS105694	SS105594	SS106594	SS106494	SS106994	SS107194	SS107294	SS105494	SS106694	SS107194

SEMI-VOLATILE COMPOUNDS: RAW DATA

000	_	_	_	_		_	, —	_	,	_	_	_		T			,								_											_	,				
Prepare																																									
81010	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	999	1600	1600	0091	1600	50	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	10
W 2 () ()	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UGAL	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UGAL							
**************************************	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	1750	1750	1750	1800	1800	1850	1900	25	1650	1700	1700	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	1750	1750	1750	1800	1800	1850	1900	5
* 7 * 8 7 * 8									_	L		_																													
	۸	۸	Λ	۸	Λ	^	Λ	^	Λ	Λ	۸	Λ	^	Λ	۸	Λ	۸	Λ	۸	Λ	Λ	^	۸	Λ	۸	Λ	۸	Λ	>	>	>	Λ	Λ	۸	۸	۸	۸	۸	۸	Λ	Λ
8 () () () () () () () () () (n	U	Ω	U	U	n	U	n	n	U	U	U	U	U	U	U	U	U	Ω	U	Û	U	U	U	U	U	U	n	Ω	'n	D	n	U	U	U	U	U	U	U	U	U
	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	10
NAME OF STREET	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	50	3300	3400	3400	3400	3400		3400	3400	\vdash	-	+	\dashv	3500	3500	3500	3500	3500	3600	3600	3700	3800	10
X 2 3	ř	3.	3,	3,	ž	3.	3,	3.	3.	3.	3.	3.	3,	3.	36	36	37	38	•	33	37	34	34	34	34	34	34	35	35	35	35	35	35	35	35	35	36	36	37	38	
TLA INNY	3-NITROANILINE		3-NITROANILINE	4,6-DINITRO-2-METHYL.PHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYL PHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL		4,6-DINITRO-2-METHYLPHENOL			4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYL.PHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYL.PHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL	4,6-DINITRO-2-METHYLPHENOL		4-CHLORO-3-METHYLPHENOL															
	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS														
ST MANY S	SS00122EG	SS00112EG	SS00105EG	SS00116EG	SS00117EG	SS00113EG	SS00120EG	SS00119EG	SS00125EG	SS00103EG	SS00115EG	SS00111EG	SS00110EG	SS00107EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00116EG	SS00123EG	SS00122EG	SS00117EG	SS00118EG	SS00112EG	SS00105EG	SS00125EG	SS00119EG	SS00103EG	SS00107EG	SS00120EG	SS00113EG	SS00110EG	SS00111EG	SS00115EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG
A A	D2	% X	DZ	73	33	۸,	P2	딥	Ы	М	P4	٧٤	V4	72	V 3	13	D6	D4	ы	ā	Z	3	25	23	5	9,	D2	ы	E	E	72	22	7.7	V4	\$	PZ	K 3	D3	<u>%</u>	D4	М
100 A 100 M	SS107094	SS106094	SS105394	SS106494	SS106594	SS106194	SS106894	SS106794	SS107294	SS107294	SS106394	SS105994	SS105894	SS105594	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS106494	SS107194	SS107094	SS106594	SS106694	SS106094	SS105394	SS107294	SS106794	SS107294	SS105594	SS106894	SS106194	SS105894	SS105994	SS106394	SS105794	SS105694	SS106294	SS106994	SS107294

8-1°

330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UGV	UG/KG																		
335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365
		Ш																																						
>	>	Λ	Λ	Λ	^	۸	۸	Λ	Λ	Λ	Λ	^	Λ .	۸	۸	Λ	Λ	۸	Λ	Λ	Λ	۸	۸	Λ	Λ	v	۸	۸	^	Λ	Λ	۸	Λ	۸ _	Λ	^	۸	^	^	۸
Ω	n	n	Ū	Ū	U	U	U	U	U	U	U	n	U	U	U	U	n	Ω	U	U	U	U	U	Ω	_ U	U	U	U	Ω	Û	n	Ω	U	U	Ú	U	U	U	Ω	Ω
029	089	089	089	069	069	069	069	069	069	069	700	200	710	710	710	710	730	730	730	760	10	0/9	089	089	089	069	069	069	069	069	069	069	00/	700	710	710	710	710	730	130
0/9	089	089	680	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	10	0/9	089	089	089	069	069	069	069	069	069	069	001	700	710	710	710	710	730	730
4-CHLORO-3-METHYLPHENOL		4-CHLORO-3-METHYLPHENOL	4-CHLOROANILINE																																					
REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL																													
SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00117EG	SS00116EG	\$S00103EG	SS00112EG	SS00120EG	SS00118EG	SS00125EG	SS00115EG	SS00110EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00117EG	SS00125EG	SS00116EG	SS00103EG	SS00120EG	SS00118EG	SS00112EG	SS00110EG	SS00115EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00114EG	SS00109EG
DI	D2	P6	DS	P3	73	P7	9/	74	IA	P7	P4	٧4	7.7	P1	L/A	۸۶	٨3	<u> </u>	90	D4	Ъ	DI	94 1	50	D2	ы	Ы	P5	<i>L</i> 4	P2	VI	9/	V4	P4	V2	Id	L/A	VS	D6	V3
SS105494	SS105394	SS107194	SS107094	SS106594	SS106494	SS107294	SS106094	SS106894	SS106694	SS107294	SS106394	SS105894	SS105594	SS106794	SS106194	SS105994	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS106594	SS107294	SS106494	SS107294	SS106894	SS106694	SS106094	SS105894	SS106394	SS105594	SS106794	SS106194	SS105994	SS106294	SS105794

SEMI-VOLATILE COMPOUNDS: RAW DATA

SEMI-VOLATILE COMPOUNDS: RAW DATA

#	_			<u> </u>	_	Т	_	Т	т-	Т	Τ-	Т	I	T .	_	ı	1	Τ-	Γ-	ı –	_	1 "	T	_	1	_	_	r—			_				Τ-	T	1	T	_	_	_
* (1)	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
88.88	UG/KG	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UGAL	UG/KG																															
	365	380		335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355
	>	^	Λ	Λ	۸	۸	Λ	^	>	^	Λ	Λ	Λ	Λ	۸	۸	Λ	Λ	۸	۸	Λ	Λ	Λ	Λ	^	Λ	۸	۸	Λ	Λ	Λ	Λ	Λ	۸	۸	۸	۸	۸	Λ	۸	۸
	Þ	n	Ū	U	U	U	U	Ū	n	n	n	n	n	n	U	U	ū	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	ū	U	U	U	U	U	U
***	730	760	10	0/9	089	089	089	069	069	069	069	069	069	069	700	00/	710	710	710	710	730	730	730	160	10	019	089	089	089	069	069	069	069	069	069	069	200	700	710	710	710
	+									Ĺ	-		_						·				J					_	J	1	_	0		_	_	J	1	1	1	,	-
Kestura	730	789	10	670	680	089	089	069	069	969	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	0/9	089	089	089	9	069	069	069	069	069	069	700	700	710	710	710
TAX I YAY	4-CHLOROANILINE	4-CHLOROANILINE	4-CHLOROPHENYL PHENYL ETHER		4-CHLOROPHENYL PHENYL ETHER	4-CHLOROPHENYL PHENYL ETHER	4-CHLOROPHENYL PHENYL ETHER	4-METHYLPHENOL																																	
	REAL	REAL	RNS	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	REAL	REAL	REAL	REAL.	REAL	REAL																		
85.000.58	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00103EG	SS00116EG	SS00120EG	SS00117EG	SS00118EG	SS00125EG	SS00112EG	SS00115EG	SS00110EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00117EG	SS00116EG	SS00120EG	SS00112EG	SS00103EG	SS00118EG	SS00125EG	SS00110EG	SS00115EG	SS00119EG	SS00113EG	SS00111EG
	S	D4	B	⊼	22	32	D2	ы	ਲ	72	Ξ	V1	М	9/	P4	44	Λ2	Ы	7.	Š	<u>D3</u>	V 3	D6	D4	ы	Δī	DS	3	D2	2	23	22	9,	ы	۲Į	Ы	٧4	P4	Ρ1	77	VS
LOCATION	55105694	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS107294	SS106494	SS106894	SS106594	SS106694	SS107294	SS106094	SS106394	SS105894	SS105594	SS106794	SS106194	SS105994	SS105694	SS105794	SS106294	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS106594	SS106494	SS106894	SS106094	SS107294	SS106694	SS107294	SS105894	SS106394	SS106794	SS106194	SS105994

SEMI-VOLATILE COMPOUNDS: RAW DATA

<i>((4)</i>	Υ			_	1	_	_	_	,	_	<u> </u>	_	_	_	_	_	_		_	_							_					_								
330	330	330	330	330	50	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	50	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	<u> </u>	UG/KG	UG/L	UG/KG																														
355	365	365	365	380	25	1650	1700	1700	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	1750	1750	1750	1800	1800	1850	1900	25	1650	1700	1700	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750
	_				L			L																																
^	>	>	Λ	Λ	-	>	>	^	Λ	۸	Λ	۸	Λ	Λ	Λ	Λ	Λ	>	_ ^	۸	۸	۸	۸	۸	۸	۸	۸	۸	۸	Λ	۸	۸	۸	۸	۸	۸	۸	۸	۸	۸
n	n	Ω	U	n	n	n	n	n	Ω	U	U	U	ū	U	U	U	n	n	U	n	U	Ū	U	n	U	U	U	U	U	U	U	U	n	n	Ū	U	U	Ú	U	U
710	730	730	730	760	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500
710	730	730	730	09/	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700	3800	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500		3500
4-METHYLPHENOL	4-METHYLPHENOL	4-METHYLPHENOL	4-METHYLPHENOL	4-METHYLPHENOL	4-NITROANILINE	4-NITROPHENOL																																		
REAL	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	RNS	REAL	DUP																													
SS00107EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	\$\$00106EG	SS00105EG	SS00117EG	SS00123EG	SS00112EG	SS00122EG	SS00118EG	SS00116EG	SS00119EG	SS00103EG	SS00120EG	SS00125EG	SS00115EG	SS00113EG	SS00111EG	SS00110EG	SS00107EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00116EG	SS00118EG	SS00123EG	SS00117EG	SS00112EG	SS00122EG	SS00105EG	SS00119EG	SS00120EG	SS00125EG	SS00110EG	SS00103EG
V2	D6	V 3	D3	D4	P7	D1	D2	33	P8	^ 6	D\$	VI	33	ā	ы	P2	P7	P4	7.7	VS	٧4	V2	V3	D3	76	D4	ы	īΩ	Z.	5	78	73	Λ6	D5	D2	P1	72	ы	٧4	М
SS105594	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS106594	SS107194	SS106094	SS107094	SS106694	SS106494	SS106794	SS107294	SS106894	SS107294	SS106394	SS106194	SS105994	SS105894	SS105594	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS106494	SS106694	SS107194	SS106594	SS106094	SS107094	SS105394	SS106794	SS106894	SS107294	SS105894	SS107294

SEMI-VOLATILE COMPOUNDS: RAW DATA

	т-	Т	1	, -	_	Υ-	_	т-	Т-	_	_	т-	_	_	T	Т	_	T	_	_	_	_	_	_	,		_	_			_	_			_	_		1		_
2000	3 5	8	1600	909	1600	1600	88	92	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330
וופענפ	4	1	<u> </u>	UG/KG	L	L	_	╄	UG/KG	UG/L	UG/KG	UG/KG	_	UG/KG	UG/KG	UG/KG	L	UG/KG	UG/KG	UG/KG																				
1750	T	T	Γ	1800	1800	T	T	T	335		T	Γ	T	Γ			Γ	T		Г	350			Г	355 L		365	365	380	5	335	340 L		340		345 L	Γ	345 U		345 L
	1		<u> </u>	1		Ē	Ĕ		3	3	3	3	3	ě	3	3	3	3	3	3.	3.	3.	3.	3	3.	3	3(3(30		3.	3,	3,	3,	3,	37	3,	3,	3,	3,
	H				-		_		-	_		-	_	-	L	\vdash	L		_	_																				-
>		>	>	Λ	>	>	>	^	>	>	>	>	^	Λ	۸	^	>	>	>	۸	۸	۸	Λ	۸	Λ	۸	Λ	۸	۸	Λ	۸	۸	۸	Λ	۸	Λ	Λ	۸	۸	^
=		n	Ū	U	n	Ū	Ω	n	n	Þ	n	U	U	U	Ú	n	n	n	Ω	Ũ	U	U	Ú	U	U	U	U	U	U	U	Ú	U	Ú	U	Ú	U	Ú	U	U	n
3500	3500	3500	3500	3600	3600	3700	3800	91	0/9	089	089	089	069	069	069	069	069	069	069	200	700	710	710	710	710	730	730	730	760	10	0/9	089	089	089	069	069	069	069	069	069
3500	3500	3500	3500	3600	3600	3700	3800	10	0/9	680	680	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	0/9	680	089	089	069	069	069	069	069	069
4-NITROPHENOI.	4-NITROPHENOL	ACENAPHTHENE	ACENAPHTHYLENE	ACENAPHTHYLENE	ACENAPHTHYLENE	ACENAPHTHYLENE	ACENAPHTHYLENE		ACENAPHTHYLENE	ACENAPHTHYLENE	ACENAPHTHYLENE		ACENAPHTHYLENE																											
REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL.	REAL																		
SS00113EG	SS00111EG	SS00107EG	SS00115EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00116EG	SS00112EG	SS00117EG	SS00118EG	SS00120EG	SS00103EG	SS00125EG	SS00115EG	SS00110EG	SS00119EG	SS00113EG	SS00111EG	SS00107EG	SS00114EG	SS00108EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00125EG	SS00112EG	SS00103EG	SS00116EG	SS00117EG	SS00118EG
-	VS	V2	P4	23	\$	8	74	М	Σ	D2	32	DŞ	Z.	9	2	7	72	М	Ы	P4	٧4	ā	77	VS	72	26	<u>13</u>	۲3	7	Ы	īΩ	22	2	D2	Ы	9/	ы	73	13	١٨
SS106194 V7	SS105994	SS105594	SS106394	SS105694	SS105794	SS106294	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106494	SS106094	SS106594	SS106694	SS106894	SS107294	SS107294	SS106394	SS105894	SS106794	SS106194	SS105994	SS105594	SS106294	SS105694	SS105794	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS107294	SS106094	SS107294	SS106494	SS106594	SS106694

SEMI-VOLATILE COMPOUNDS: RAW DATA

																																								Γ-
		L																																						
330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330		330	330	330	10	330	330	330	330	Ц	330	330
UG/KG	NG/KG	UG/KG	UG/KG	UG/KG	NG/L	NG/KG	UG/KG	NG/KG	UG/KG	NG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NG/KG	UG/KG	UG/KG	UG/KG	NG/L	UG/KG																				
345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345
۸	۸	۸	Λ	Λ	۸	Λ	۸	۸	۸	۸	۸	Λ .	۸	۸	V	۸	۸	۸	۸	۸	۸	۸	۸	Λ	Λ	۸	۸	۸	Λ	Λ	۸	Λ	V	۸	۸	Λ	۸	>	Λ	>
U	U	U	U	U	U	U	U	U	U	U	U	n	U	U	U	n	n	U	U	U	U	U	U	n	U	U	U	U	Ŋ	U	U	U	U	n	U	U	U	Ū	U	=
069	700	700	710	710	710	710	730	730	730	09/	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	09/	10	0.29	089	089	089	069	069	000
069	700	700	710	710	710	710	730	730	730	160	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	019	089	089	089	069	069	069
ACENAPHTHYLENE	ANTHRACENE	BENZO(a)ANTHRACENE																																						
REAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAI.																												
SS00120EG	SS00110EG	SS00115EG	SS00107EG	SS00113EG	SS00111EG	SS00119EG	SS00108EG	SS00114EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00105EG	SS00123EG	SS00118EG	SS00117EG	SS00116EG	SS00112EG	SS00103EG	SS00125EG	SS00120EG	SS00115EG	SS00110EG	D361100SS	SS00107EG	SS00113EG	SS00111EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00117EG	SS00120EG	SSOOTIFE
P2	V4	P4	V2	7.7	VS	P1	D3	D6	V3	D4	M	D1	DS	D2	P6	V1	В	PS	۷6	P7	P7	P2	P4	V4	ы	V2	V7	VS	D6	V3	D3	D4	P7	D1	D2	P6	DS	ВЗ	P2	ĭ
SS106894	SS105894	SS106394	SS105594	SS106194	SS105994	SS106794	SS105694	SS106294	SS105794	SS106994	SS107294	SS105494	SS107094	SS105394	SS107194	SS106694	SS106594	SS106494	SS106094	SS107294	SS107294	SS106894	SS106394	SS105894	SS106794	SS105594	SS106194	SS105994	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106594	SS106894	SC106404

SEMI-VOLATILE COMPOUNDS: RAW DATA

330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	$3\overline{3}0$	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NG/U	UG/KG	UG/KG	UG/KG
345	345	345	345	350	350	355	355	355	355	365	365	365	380	. 5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340
۸																																							
>	>	>	>	۸	۸	>	V	^	Λ	Λ	Λ.	۸	Λ	Λ	۸	Λ	۸	Λ	Λ	Λ	۸	۸	۸	Λ	۸	Λ	۸	۸	۸	Λ	^	۸	Λ	۸	^	۸	V	^	Λ
n	n	b	n	U	U	Ω	Ú	Ω	U	U	U	U	Ú	U	U	U	Ú	Û	Ú	U	U	U	Ú	U	U	U	Û	Ú	Ω	Û	n	U	n	n	U	U	U	U	Ω
069	069	069	069	700	700	710	710	710	710	730	730	730	160	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	10	0/9	089	089
069	069	069	069	700	700	710	710	710	710	730	730	730	092	10	0.09	089	089	680	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	092	10	019	089	089
REAL (BENZO(a)ANTHRACENE	BENZO(a)ANTHRACENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(a)PYRENE	BENZO(b)FLUORANTHENE	BENZO(b)FLUORANTHENE	BENZO(b)FLUORANTHENE	BENZO(b)FLUORANTHENE												
REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL																								
SS00125EG	SS00118EG	SS00103EG	SS00112EG	SS00110EG	SS00115EG	\$\$00113EG	SS00111EG	SS00107EG	SS00119EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00105EG	SS00122EG	SS00125EG	SS00103EG	SS00120EG	SS00118EG	SS00117EG	SS00116EG	SS00112EG	SS00115EG	SS00110EG	SS00113EG	SS00119EG	SS00107EG	SS00111EG	SS00108EG	SS00114EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG
<i>L</i> J	V1	Ы	9/	V4	P4	7.7	٧5	V2	P1	26	V3	D3	<u>7</u>	М	D1	28	D2	DS	ы	P7	22	Υ.	В	PS	9/	P4	٧4	77	P1	Λ2	٧2	D3	D6	V3	D4	P7	D1	P6	DS
SS107294	SS106694	SS107294	SS106094	SS105894	SS106394	SS106194	SS105994	SS105594	SS106794	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS107194	SS105394	SS107094	SS107294	SS107294	SS106894	SS106694	SS106594	SS106494	SS106094	SS106394	SS105894	SS106194	SS106794	SS105594	SS105994	SS105694	SS106294	SS105794	SS106994	SS107294	SS105494	SS107194	SS107094

SEMI-VOLATILE COMPOUNDS: RAW DATA

W 8 8 2 3 8																																									
1111	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	2	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	2	330
N. S.	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NGAL	UG/KG	DG/KG	UG/KG	NGVL	UG/KG																		
	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335
2288	\prod																																								
	 	>	Λ	Λ	۸	۸	Λ	^	۸	Λ	۸	۸	۸	۸	Λ	۸	^	>	^	۸	۸	Λ	Λ	۸	۸	۸	Λ	۸	^	Λ	Λ	^	۸	۸	 - >	^	۸	۸	۸	۸	Λ
	+	n	U	U	U	U	U	U	U	Ú	U	U	U	U	U	U	n	Þ	U	U	U	U	U	n	U	U	U	U	U	Û	U	n	n	U_	n	U	n	U	U	U	Ú
᠁	88	86	069	069	069	069	069	700	200	710	710	710	710	730	730	730	992	01	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	09/	10	029
KONG IN S	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	10	0/9	680	089	680	969	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	029
200	BENZO(6)FLUOKANIHENE		BENZO(b)FLUORANTHENE	BENZO(ghi)PERYLENE	BENZO(ghj)PERYLENE	BENZO(ghi)PERYLENE	BENZO(k)FLUORANTHENE	BENZO(k)FLUORANTHENE																																	
	KEAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL																										
STEEL FOODS	350011/EG	SS00125EG	SS00116EG	SS00103EG	SS00120EG	SS00112EG	SS00118EG	SS00110EG	SS00115EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00108EG	SS00114EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00116EG	SS00103EG	SS00120EG	SS00117EG	SS00118EG	SS00125EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	SS00111EG	SS00107EG	SS00119EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG
2	2 8	E	22	Ы	2	98	5	44	P4	Λ2	P1	7.7	Ş	<u> </u>	Dğ	٧3	D4	Ы	ī	æ	DS	D2	Œ	ы	22	33	ī	М	9,	44	Z	۲۷	^	Λ2	Ы	28	λ3	<u>D3</u>	7	ы	DI
00104604	33100394	SS10/294	SS106494	SS107294	SS106894	SS106094	SS106694	SS105894	SS106394	SS105594	SS106794	SS106194	SS105994	SS105694	SS106294	SS105794	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS106494	SS107294	SS106894	SS106594	SS106694	SS107294	SS106094	SS105894	SS106394	SS106194	SS105994	SS105594	SS106794	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494

SEMI-VOLATILE COMPOUNDS: RAW DATA

2000		_	_				_			_	_																														
10.00																																									
** (1) **	330	330	330	330	330	330	330	330		330	330	330	330	330	330	330	330	330	330	330	20	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
2 7 8	UG/KG	UG/L	UG/KG																																						
* 4 K 18 . 7 7	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	25	1650	1700	1700	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	1750	1750	1750	1800	1800	1850
	_	_							_						_			_																							\dashv
	>	Λ	^	Λ	۸	۸	^	^	>	Λ	Λ	Λ	V	Λ	Λ	>	>	>	۸	۸	۸	Λ	Λ	۸	Λ	Λ	٨	Λ	>	>	>	Λ	Λ	Λ	Λ	۸	Λ	۸	۸	>	>
	Þ	U	Ŋ	Û	U	U	Û	Û	þ	U	U	Ū	U	Ω	n	n	Ω	n	U	U	U	U	n	U	U	U	n	Û	n	D	D	Ω	U	U	U	U	U	n	U	Ú	n
	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	20	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700
10.000	089	680	680	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	50	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500	3500	3500	3600	3600	3700
	BENZO(k)FLUORANTHENE	BENZOIC ACID																																							
**************************************	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL																															
258 (1985)	SS00123EG	SS00122EG	SS00105EG	SS00116EG	SS00103EG	SS00120EG	SS00117EG	SS00118EG	SS00125EG	SS00112EG	SS00110EG	SS00115EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00112EG	SS00123EG	SS00116EG	SS00117EG	SS00118EG	SS00105EG	SS00119EG	SS00120EG	SS00103EG	SS00110EG	SS00125EG	SS00115EG	SS00113EG	SS00107EG	SS00111EG	SS00109EG	SS00108EG	SS00114EG
X	2	DS	D2	33	Ы	72	P3	V1	М	9/	V4	P4	V2	P1	V7	VS	D3	V3	D6	D4	Ы	DI	DS	9/	32	PS	В	7	D2	Ā	22	ы	٧4	М	P4	77	V2	VS	V3	D3	28
THE NOTING	SS107194	SS107094	SS105394	SS106494	SS107294	SS106894	SS106594	SS106694	SS107294	SS106094	SS105894	SS106394	SS105594	SS106794	SS106194	SS105994	SS105694	SS105794	SS106294	SS106994	SS107294	SS105494	SS107094	SS106094	SS107194	SS106494	SS106594	SS106694	SS105394	SS106794	SS106894	SS107294	SS105894	SS107294	SS106394	SS106194	SS105594	SS105994	SS105794	SS105694	SS106294

SEMI-VOLATILE COMPOUNDS: RAW DATA

13.19																																								
1600	2	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
1)G/KG	UG/L	UG/KG	DZ/DA	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	OG/KG	UGAL	UG/KG																												
1900	3	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355
	-			_																																				
^		>	Λ	Λ	_ ^	^	۸	۸	^	_ \	^	Λ	^	۸	Λ	۸	N N	\ \	Λ	_ ^	۸	Λ.	۸	٧.	Λ	Λ	Λ	۸	^	^	Λ	V	Λ	Λ .	Λ	Λ	۸	Λ	۸	^
2333	F										,												1																	H
2	-	P	U	U	U	Ü	Ū	ū	Ü	U	U	U	ū	U	U	U	Ū	Ū	Ū	U	U	U	U	Ū	U	U	U	ŋ	ם	ם	Ω	U	U	U	U	U	U	U	U	n
3800	2	019	089	089	680	9	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	10	0/9	089	089	089	069	069	069	069	069	069	069	700	200	710	710	710	710
3800	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	079	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710
BENZOIC ACID	BENZYL ALCOHOL	BIS(2-CHLOROETHOXY)METHANE																																						
REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	DUP	REAL																								
SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00116EG	SS00117EG	SS00103EG	SS00112EG	SS00120EG	SS00118EG	SS00125EG	SS00115EG	SS00110EG	SS00119EG	SS00113EG	SS00111EG	SS00107EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00103EG	SS00125EG	SS00112EG	SS00116EG	SS00117EG	SS00118EG	SS00120EG	SS00110EG	SS00115EG	SS00107EG	SS00113EG	SS00111EG	SS00119EG
D4	P7	D1	D2	3	DS	PS	23	Ы	9,	72	ΙΛ	Ы	P4	٧4	Ы	7.7	VS	٧2	V3	D3	D6	D4	М	DI	32	DS	D2	ы	М	9/	33	2	Z.	22	٧4	P4	۸2	۸2	٧٤	P1
SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106494	SS106594	SS107294	SS106094	SS106894	SS106694	SS107294	SS106394	SS105894	SS106794	SS106194	SS105994	SS105594	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS107294	SS107294	SS106094	SS106494	SS106594	SS106694	SS106894	SS105894	SS106394	SS105594	SS106194	SS105994	SS106794

SEMI-VOLATILE COMPOUNDS: RAW DATA

		Г	Γ	1		Γ	T	Γ	Τ	Γ	Γ	Т	Γ	Γ	Ι-	ı	_	<u> </u>	Г	Γ	Γ	ı	Γ	T	Т	Τ-	Ī						Γ	Ι-	Τ-	_	T		T	_	
MAPE																																									
(411)	330	330	330	330	01	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330
	UG/KG	UG/KG	UG/KG	UG/KG	NG/L	UG/KG	NG/L	UG/KG																																	
	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355
							L																																		
10 mm	>	۸	Λ.	۸	۸	۸	^	Λ	>	V	Λ	^	Λ	Λ	۸	Λ	Λ .	۸	Λ	۸	۸ ا	^	۸	Λ	۸	۸	Λ	Λ	>	>	>	Λ	Λ	۸	۸	^^^	_ ^	Λ .	۸	Λ	^
17.10	٥	n	U	U	U	U	U	U	Ŋ	U	U	n	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	Û	n	D	n	U	U	U	U	n	U	U	U	Ω
***	730	730	730	760	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	092	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710
	1												_	_															-		\dashv	-							Н		
N. B. W.	33	730	730	760	10	019	089	089	089	069	069	069	069	9	069	9	700	700	710	710	710	710	730	730	730	160	10	019	089	089	089	069	069	069	069	069	069	069	700	001	710
AKAI YTE	BIS(2-CHLOROETHOXY)METHANE	BIS(2-CHLOROETHOXY)METHANE	BIS(2-CHLOROETHOXY)METHANE	BIS(2-CHLOROETHOXY)METHANE	BIS(2-CHLOROETHYL)ETHER	BIS(2-CHLOROISOPROPYL)ETHER																																			
ACC COURS	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	REAL		1	٦			٦	REAL	٦							1	7		٦			REAL	REAL	1		REAL							
44.54 Dr	SS00114EG	SS00108EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00125EG	SS00120EG	SS00116EG	SS00117EG	SS00103EG	SS00112EG	SS00118EG	SS00110EG	SS00115EG	SS00107EG	SS00113EG	SS00119EG	SS00111EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00116EG	SS00120EG	SS00118EG	SS00117EG	SS00103EG	SS00112EG	SS00125EG	SS00115EG	SS00110EG	SS00113EG
	80	ä	λ3	Ž	B	ā	D2	2	DS	ы	22	E	B	ы	9,	5	44	72	72	5	Ē	VS	28	۲3	D3	7	ы	DΙ	2	DS	D2	æ	2	17	2	Ы	9/	Ы	P4	44	77
NOT YOU	SS106294	SS105694	SS105794	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS107294	SS106894	SS106494	SS106594	SS107294	SS106094	SS106694	SS105894	SS106394	SS105594	SS106194	SS106794	SS105994	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS106494	SS106894	SS106694	SS106594	SS107294	SS106094	SS107294	SS106394	SS105894	SS106194

SEMI-VOLATILE COMPOUNDS: RAW DATA

000	_	_							_			_	_		_		_		_			_	_		-	_	_	_		_	_	_	_	_	_	_	_	_	_	_
4																																								
330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	l i	[330
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UGAL	UG/KG										
355	355	355	365	365	365	380	5	75	16	335	340	340	340	345	345	345	345	345	345	345	350	355	355	355	355	365	365	380	2	335	340	340	340	345	345	345	345	345	345	345
	-			Н								_			Н														-		_									
>	>	>	V	Λ	۸	۸	Λ	Α	A	۸	Λ	۸	^	Λ	Λ	Λ	۸	Λ	Λ	Λ	Λ	Λ	Λ	Λ	^	Λ	۸	Λ	>	>	>	>	۸	۸	Λ	>	^	>	^	^
=	þ	Þ	n	U	U	U	Ω	J)	U	U	U	U	n	U	Ω	Ω	U	n	U	Ω	U	U	U	n	U	U	U	n	Ω	U	Ω	Û	U	U	n	U	U	Û	U
710	710	710	730	730	730	760	10	11.11	11.11	019	089	089	089	069	069	069	069	069	069	069	700	710	710	710	710	730	730	092	10	0/9	089	089	089	069	069	069	069	069	069	069
710	710	710	730	730	730	091	10	75	16	0/9	089	089	089	069	069	069	069	069	069	069	700	710	710	710	710	730	730	160	10	0/9	089	680	680	069	069	069	069	069	069	069
RIS/2-CHI OROISOPROPYI JETHER	BIS/2-CHLOROISOPROPYL)ETHER	BIS(2-CHLOROISOPROPYL)ETHER	BIS(2-CHLOROISOPROPYL)ETHER	BIS(2-CHLOROISOPROPYL)ETHER	BIS(2-CHLOROISOPROPYL)ETHER	BIS(2-CHLOROISOPROPYL)ETHER	BIS(2-ETHYLHEXYL)PHTHALATE	BIS(2-ETHYLHEXYL)PHTHALATE			BIS(2-ETHYLHEXYL)PHTHALATE	BUTYL BENZYL PHTHALATE																												
REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP																		
SS00111EG	SS00119EG	SS00107EG	SS00114EG	SS00108EG	SS00109EG	SS00121EG	SS00124EG	SS00109EG	SS00115EG	SS00106EG	SS00122EG	SS00105EG	SS00123EG	SS00125EG	SS00117EG	SS00120EG	SS00118EG	SS00103EG	SS00112EG	SS00116EG	SS00110EG	SS00119EG	SS00107EG	SS00113EG	SS00111EG	SS00114EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00116EG	SS00112EG	SS00125EG	SS00120EG	SS00118EG	SS00117EG	SS00103EG
۸ <u>۲</u>	Ы	Λ2	9Q	D3	V3	D4	М	V3	P4	IQ	SQ.	D2	P6	Ы	ધ	ы	I'A	Ы.	9/	Sd	۸4	P1	V2	<i>L</i> Λ	V5	90	D3	D4	М	DI	D2	P6	DS	PS	9/	Ы	P2	V1	В	Ы
SS105994	SS106794	SS105594	SS106294	SS105694	SS105794	SS106994	SS107294	SS105794	\$\$106394	SS105494	SS107094	SS105394	SS107194	SS107294	SS106594	SS106894	SS106694	SS107294	SS106094	SS106494	SS105894	SS106794	SS105594	SS106194	SS105994	SS106294	SS105694	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106494	SS106094	SS107294	SS106894	SS106694	SS106594	SS107294

SEMI-VOLATILE COMPOUNDS: RAW DATA

26	_		Γ-		<u> </u>	T	1	Т	Т	_	_	Г-	г	т.	_	_	T	_			_	<u> </u>	_			г		_		_				_		т—	_	_		_	 -
303	330	330	330	330	330	330	330	330	330	330	2	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330
	UG/KG	NG/L	UG/KG	UG/L	UG/KG																																				
	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	160	335	340	340	340	345	345	345
	4	4				L	L		L	_	_		_					L																			10				
	 	>	^	۸	۸	-	>	-	>	^	^	^	^	^	^	Λ	Λ	^	_ ^	_ ^	۸ ا	۸ ا	^	Λ	Λ	Λ	^	۸	Λ	Λ	>	۸	V	A		_ ^	JA 49	\vdash	JA 49	Н	JA 49
	1		J			_		_	L				_			_															\dashv						_	\vdash		Н	Н
***	4	4	U	U	U	Ω	n	Ω	ח	n	U	Ū	n	U	U	U	n l	n	n l	U	U	U	U	U	Ω	U	U	U	Þ	D	7	U	U	J	U	U	U	U	U	U	
	8	8	710	710	710	710	730	730	730	760	10	929	089	089	980	069	069	690	069	969	069	969	700	700	710	710	710	710	730	730	730	760	10		670	680	980	089	069	960	069
N. S.	700	700	710	710	710	710	730	730	730	160	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	160	0/9	680	680	089	069	069	069
	BUTYL BENZYL PHTHALATE	CHRYSENE	DI-n-BUTYL PHTHALATE																																						
	KEAL	REAL	RNS	REAL	DUP	REAL	REAL	REAL	REAL.	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL																						
	SS00115EG	SS00110EG	SS00113EG	SS00111EG	SS00107EG	SS00119EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00112EG	SS00116EG	SS00117EG	SS00118EG	SS00120EG	SS00103EG	SS00125EG	SS00110EG	SS00115EG	SS00111EG	SS00113EG	SS00119EG	SS00107EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00125EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00120EG	SS00103EG	SS00112EG
	2	*	۸۷	VS	Λ2	P1	٧3	D3	D6	D4	ы	DI	DS	3	D2	9,6	P5	23	ΙΛ	22	ы	ы	V4	P4	VS	٧2	F	72	ñ	λ3	2	40	Ы	Ы	ā	D2	P6	DS	22	Ы	9/
LOCATERY	35106394	55105894	SS106194	SS105994	SS105594	SS106794	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS106094	SS106494	SS106594	SS106694	SS106894	SS107294	SS107294	SS105894	SS106394	SS105994	SS106194	SS106794	SS105594	SS105694	SS105794	SS106294	SS106994	SS107294	SS107294	SS105494	SS105394	SS107194	SS107094	SS106894	SS107294	SS106094

30.41																																									
	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330
	UG/KG	UG/L	UG/KG	UGAL	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG																																
	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345
		49	49			49	49	49		49	_		67																							Щ	Ц				<u> </u>
	>	JA	JA	^	^	JA	JA	JA	^	Υſ	Λ	Λ) JA	^	^	Λ	^	۸	^	۸	Λ	۸	Λ	۸	Λ	Λ	>	>	^	>	>	^	^	۸	^	>	Λ	^	^	^	۸
	Ω	U	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	Ω	Ω	Ω	Ω	n	Ω	n	Ω	n	Ω	Ω	n	Ω	Ω	Ω
331	069	069	069	00 <i>L</i>	00 <i>L</i>	710	710	710	710	730	730	730	160	10	0/9	089	680	680	690	069	9	690	069	069	9	700	700	710	710	710	710	730	730	730	160	10	670	089	680	680	690
Man and and	690	969	690	700	700	710	710	710	710	730	730	730	160	10	670	680	089	680	069	690	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	670	089	089	680	069
ANALYTE .	DI-n-BUTYL PHTHALATE	DI-a-BUTYL PHTHALATE	DI-n-BUTYL PHTHALATE	DI-n-BUTYL PHTHALATE	DI-n-BUTYL PHTHALATE	DI-n-OCTYL PHTHALATE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE																													
(((((((((((((((((((REAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL																														
SALES RES	SS00116EG	SS00117EG	SS00118EG	SS00115EG	SS00110EG	SS00119EG	\$\$00113EG	SS00111EG	SS00107EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00117EG	SS00116EG	SS00120EG	SS00112EG	SS00103EG	SS00125EG	SS00118EG	SS00115EG	SS00110EG	SS00113EG	SS00111EG	SS00107EG	SS00119EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00116EG
i X X X	Æ	2	ľ	P4	44	E	41	٧۶	Λ2	26	Λ3	D3	7	ы	ū	D2	ž	DS	73	FZ	22	9/	Ы	P7	<u> </u>	P4	44	7	X	72	Ы	D6	43	D3	D4	ы	ī	D2	P6	DS	Σ
8	SS106494	SS106594	SS106694	SS106394	SS105894	SS106794	SS106194	SS105994	SS105594	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106594	SS106494	SS106894	SS106094	SS107294	SS107294	SS106694	SS106394	SS105894	SS106194	SS105994	SS105594	SS106794	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106494

SEMI-VOLATILE COMPOUNDS: RAW DATA

SEMI-VOLATILE COMPOUNDS: RAW DATA

	T		Τ	Γ	Τ	Τ	Ţ	T	Γ	Ţ	Τ	Ţ	T	Ŧ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Γ	<u> </u>	T	1	Υ	T	Γ	1	Γ	Γ	Г	1	Γ-	Γ	Т	Ţ	Τ	Γ	Τ
														_										_		_			_	 -	_			_						
TIGING 330	↓_	1_	丄	L	L	<u> </u>	L	L	$oldsymbol{ol}}}}}}}}}}}}}$		L		L			L	Ľ	L	L	L	L	L	L			L	L		330	330		330		L	L		L		Ľ	L
	11G/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/L	UG/KG	110/180																				
376	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340
			-																																					
^	>	>	>	^	>	۸	Λ	>	^	>	Λ	۸	۸	۸	Λ	V	Λ	Λ	^	Λ	^	Λ	Λ	V	Λ	Λ	۸	Λ	Λ	۸	Λ	۸	^	Λ	V	Λ .	>	>	^	^
	2	n	Ω	U	U	U	n	n	Ŋ	Û	U	U	Ũ	Ŋ	U	U	U	U	U	U	U	n	U	U	U	Ω	Û	Þ	Ð	Ω	Ω	n	U	Ú	n	U	n	n	n	11
069	86	069	069	069	069	700	200	710	710	710	710	730	730	730	760	10	0/9	089	089	089	069	069	069	069	069	069	069	30	30	710	710	710	710	730	730	730	760	10	0/9	089
069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	0.09	089
DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE		DIBENZO(a,h	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE		DIBENZO(a,h)ANTHRACENE	DIBENZO(a,h)ANTHRACENE	DIBENZOFURAN	DIETHYL PHTHALATE	DIETHYL PHTHALATE	DIETHYL PHTHALATE																					
DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	ADD	REAL	RNS	REAL	REAL													
SS00103EG	SS00120EG	SS00118EG	SS00117EG	SS00125EG	SS00112EG	SS00115EG	SS00110EG	SS00107EG	SS00111EG	SS00119EG	SS00113EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00122EG	SS00123EG	SS00118EG	SS00120EG	SS00103EG	SS00116EG	SS00117EG	SS00125EG	SS00112EG	SS00110EG	SS00115EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG
P7	P2	Ī	23	E	9	74	44	72	25	ā	5	S	ñ	2	7	ы	ā	22	20	£	5	2	B	X.	3	2	9	4	74	22	ā	5	23	2	23	23	Ā	E	百	D2
SS107294	SS106894	SS106694	SS106594	SS107294	SS106094	SS106394	SS105894	SS105594	SS105994	SS106794	SS106194	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS105394	SS107094	SS107194	SS106694	SS106894	SS107294	SS106494	SS106594	SS107294	SS106094	SS105894	SS106394	SS105594	SS106794	SS106194	SS105994	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394

SEMI-VOLATILE COMPOUNDS: RAW DATA

330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
UG/KG	NG/L	UG/KG	DB/ISD	DG/KG	UG/KG																																			
340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380
۸	>	>	Λ	Λ	Λ	۸	۸	Λ	V	Λ	Λ	۸	Λ	۸	۸	۸	Λ	۸	۸	۸	۸	۸	Λ	Λ	۸	^	V	۸	۸	Λ	۸	Λ	Λ	^	۸	Λ	Λ .	۸	Λ	-
n	n	Ω	U	U	n n	U	U	U	U	U	U	Ū	Ω	U	Ω	n	Ω	U	n	U	U	U	U	U	n	U	U	U	U	U	U	U	U	U	U	U	l u	U	U	þ
089	089	069	069	069	069	069	069	069	200	700	710	710	710	710	730	730	730	09/	10	019	089	680	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760
089	680	069	069	690	069	069	069	069	700	700	710	710	710	710	730	730	730	09/	10	0/9	089	680	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160
DIETHYL PHTHALATE	DIMETHYL PHTHALATE																																							
REAL	DUP	REAL	RNS	REAL	DUP	REAL																																		
SS00123EG	SS00122EG	SS00118EG	SS00112EG	SS00120EG	SS00125EG	SS00116EG	SS00117EG	SS00103EG	SS00110EG	SS00115EG	SS00113EG	SS00111EG	SS00107EG	SS00119EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00116EG	SS00120EG	SS00112EG	SS00118EG	SS00125EG	SS00117EG	SS00103EG	SS00115EG	SS00110EG	SS00113EG	SS00119EG	SS00111EG	SS00107EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG
P8	DS	ΙĀ	9,	22	ы	X	B	ы	٧4	P4	77	vs Vs	Λ2	Ы	٨3	ß	26	Ā	A	ū	DS	æ	D2	Z.	72	9/	۲۱ ۲۱	Ы	2	Ы	P4	٧4	۲۷	P1	VS	V2	٧3	D3	26	D4
SS107194	SS107094	SS106694	SS106094	SS106894	SS107294	SS106494	SS106594	SS107294	SS105894	SS106394	SS106194	SS105994	SS105594	SS106794	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS106494	SS106894	SS106094	SS106694	SS107294	SS106594	SS107294	SS106394	SS105894	SS106194	SS106794	SS105994	SS105594	SS105794	SS105694	SS106294	SS106994

SEMI-VOLATILE COMPOUNDS: RAW DATA

	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	2	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
10 1 N 1 N 10 N 10 N 10 N 10 N 10 N 10	UG/L	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG																															
W 5 N 18 * 1 N	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	>	>	Λ	Λ	Λ	V	Λ .	^	Λ	^	V	Λ	Λ	Λ	۸	۸	Λ	Λ	Λ	۸	Λ .	۸	۸	۸	Λ .	^	_ ^	^	Λ	V	V	_ ^	۸ ا	۸ ا	^	۸	^	_ ^	^	۸	^
	5	n	U	U	U	U	n	n	U	Ū	U	U	n	U	U	U	U	U	U	U	U	U	U	n	U	U	U	U	U	U	U	U	n	U	Ω	U	U	U	U	U	n
	01	070	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730
	1							_																						-											
RESERVE	의	979	089	980	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	019	089	089	089	069	069	069	9	969	069	069	00 <i>L</i>	700	710	710	710	710	730
ARAINTE	E	Ε	n	E	E	E	E	H	Е	Е	Ħ	E	E	11	a	E	E	Е	H	E	E	E																			
•	FLUORANTHENE	FLUORENE	FLUORENE	FLUORENE	FLUORENE	FLUORENE	FLUORENE	FLUORENE																																	
(0.83.80)	RNS	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL																					
84 1419 7 5	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00103EG	SS00125EG	SS00120EG	SS00118EG	SS00117EG	SS00116EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	SS00119EG	SS00107EG	SS00111EG	SS00109EG	SS00114EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00117EG	SS00125EG	SS00116EG	SS00103EG	SS00112EG	SS00120EG	SS00118EG	SS00115EG	SS00110EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00114EG
	ы	ā	20	2	D2	ы	Ы	72	ī,	ъз	P5	9/	٧4	P4	7.7	Ы	Λ2	VS	۸3	<u>D</u> 6	D3	D4	ы	DI	8	D5	D2	3	Ы	E	М	9,	12	I,	P4	٧4	V2	Ρ1	7.7	VS	D6
LOCATION	SS107294	SS105494	SS107094	SS107194	SS105394	SS107294	SS107294	SS106894	SS106694	SS106594	SS106494	SS106094	SS105894	SS106394	SS106194	SS106794	SS105594	SS105994	SS105794	SS106294	SS105694	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS106594	SS107294	SS106494	SS107294	SS106094	SS106894	SS106694	SS106394	SS105894	SS105594	SS106794	SS106194	SS105994	SS106294

SEMI-VOLATILE COMPOUNDS: RAW DATA

330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330
UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UGAL	UG/KG																																	
365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355
^	>	^	Λ	Λ	_ ^	۸	Λ	Λ	۸	Λ	۸	V	۸	V	^	۸	Λ	Λ .	۸	Λ	۸ ا	Λ	^	Λ	Λ .	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ .	Λ	۸ ا	Λ	۸	Λ	۸
n	þ	n	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	n	U	U	U	U	U	U	U	U	U	U	U	U	n	U	U	U	Ω	n
730	730	760	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	09/	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710
730	730	760	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	029	089	089	089	069	069	069	069	069	069	069	700	700	710
FLUORENE	FLUORENE	FLUORENE	HEXACHLOROBENZENE	HEXACHLOROBUTADIENE																																			
REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL	REAL	REAL																							
SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00118EG	SS00103EG	SS00112EG	SS00120EG	SS00116EG	SS00117EG	SS00125EG	SS00110EG	SS00115EG	SS00113EG	SS00107EG	SS00111EG	SS00119EG	SS00114EG	SS00108EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00116EG	SS00120EG	SS00112EG	SS00118EG	SS00125EG	SS00117EG	SS00103EG	SS00115EG	SS00110EG	SS00113EG
V3	£Q	D4	М	DI	D2	32	DS	V1	Ы	9	22	Z	3	Ы	٧4	P4	۲,	V2	٧5	ы	26	D3	V3	D4	M	DI	DS	3	22	P3	12	9,	V1	М	2	М	P4	V4	7.7
SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106694	SS107294	SS106094	SS106894	SS106494	SS106594	SS107294	SS105894	SS106394	SS106194	SS105594	SS105994	SS106794	SS106294	SS105694	SS105794	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS106494	SS106894	SS106094	SS106694	SS107294	SS106594	SS107294	SS106394	SS105894	SS106194

SEMI-VOLATILE COMPOUNDS: RAW DATA

	7																											7	7	7	1	7								П	\Box
	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330
****	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UGAL	UG/KG																															
	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350
	4													Ц															-	4	-										Н
***	>	>	Λ	Λ	Λ	۸	^	۸	Λ	^	Λ	۸	Λ	Λ	۸	۸	Λ	۸	۸	^	>	>	Λ	Λ	Λ	Λ	^	^	>	>	>	>	Λ	v	۸	۸	Λ	_ ^	۸	^	^
	Þ	Þ	U	U	n	U	U	U	U	Ω	Ω	Ú	U	Û	U	Ω	U	U	Ú	U	Ω	D	Ú	Ü	U	U	Ŋ	Ŋ	D	D	n	b	U	U	U	U	Ú	U	U	Ω	n
***	710	710	730	730	730	092	10	929	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	2	070	089	089	089	069	069	069	069	069	069	069	200
W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	710	710	730	730	730	760	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	092	10	670	089	089	680	069	069	069	069	069	069	069	700
ARALYTE	HEXACHLOROBUTADIENE	HEXACHLOROBUTADIENE	HEXACHLOROBUTADIENE	HEXACHLOROBUTADIENE	HEXACHLOROBUTADIENE	HEXACHLOROBUTADIENE	HEXACHLOROCYCLOPENTADIENE	HEXACHLOROETHANE																																	
() ((((((((((((((((((REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL	REAL	REAL	REAL																			
(31/3/3/2	SS00111EG	SS00107EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00125EG	SS00112EG	SS00103EG	SS00116EG	SS00117EG	SS00118EG	SS00120EG	SS00110EG	SS00115EG	SS00107EG	SS00113EG	SS00111EG	SS00119EG	SS00108EG	SS00114EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00122EG	SS00123EG	SS00117EG	SS00116EG	SS00120EG	SS00103EG	SS00125EG	SS00118EG	SS00112EG	SS00115EG
8888	25	^2	٧3	D3	D6	D4	P7	D1	DS	P6	D2	P7	9/	P7	PS	РЗ	V1	P2	V4	P4	V2	٧7	V5	P1	D3	D6	V3	D4	М	DI	D2	DŞ	P6	ВЗ	P5	P2	P7	M	V1	9/	P4
10117901	SS105994	SS105594	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS107294	SS106094	SS107294	SS106494	SS106594	SS106694	SS106894	SS105894	SS106394	SS105594	SS106194	SS105994	SS106794	8S105694	SS106294	SS105794	SS106994	SS107294	SS105494	SS105394	SS107094	SS107194	SS106594	SS106494	SS106894	SS107294	SS107294	SS106694	SS106094	SS106394

SEMI-VOLATILE COMPOUNDS: RAW DATA

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										TIC] <u>[</u>	JLC	TIC				<u> </u>																								
303	330	330	330	330	330	330	330	330	330																2	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330
2000	UG/KG	UG/KG	UG/KG	DZ/SA	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	NG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
***	350	355	355	355	355	365	365	365	380	450	290	1700	3400	4100	2000	7600	7800	0006	9100	10000	12000	12000	17000	18000	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355
\$2.88 \$3.88	4	-					_		_																																
	>	>	^	Λ	Λ	۸	>	>	^	Z	Z	Z	Z	Z	Z		Z -	Z	Z	Z	Z	Z	Z	Z	Λ	>	^	۸	Λ	^	۸	Λ	٨	Λ	Λ	۸ ا	Λ	Λ	Λ	۸	Λ
	1	D	n	n	Û	n	n	n	P	-	-	_	J	J	J	J	J	J	J	J	J	J	l l	-	U	Ω	Ū	U	U	Ω	Ω	U	U	n	U	U	U	n	n	U	n
	3	710	710	710	710	730	730	730	760	::	:	:	**	444	##	411	**			***		***	:	:	10	0/9	089	089	089	069	069	069	069	069	069	069	700	002	710	710	710
N. S.	8/	710	710	710	710	730	730	730	760	450	290	1700	3400	4100	5000	7600	7800	0006	0016	10000	12000	12000	17000	18000	10	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710
O IIIO VAIII	HEAACHLURUEIHANE	HEXACHLOROETHANE	Hexadecanoic acid	Hexanedioic acid, dioctyl es	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE		INDENO(1,2,3-cd)PYRENE				INDENO(1,2,3-cd)PYRENE		INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE		INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE																				
183830 1000	REAL	KEAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL																		
CONTINEC	2300110E0	SSOOIO/EG	SS00111EG	SS00119EG	SS00113EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00125EG	SS00111EG	SS00103EG	SS00108EG	SS00118EG	SS00107EG	SS00110EG	SS00120EG	SS00117EG	SS00105EG	SS00106EG	SS00115EG	SS00116EG	SS00109EG	SS00119EG	SS00124EG	SS00106EG	SS00123EG	SS00105EG	SS00122EG	SS00117EG	SS00118EG	SS00120EG	SS00125EG	SS00116EG	SS00103EG	SS00112EG	SS00110EG	SS00115EG	SS00113EG	SS00119EG	SS00111EG
7.7		7/2	S N	ā	2	28	۲3	D3	D4	М	ZŞ	ы	63	5	Λ2	*	2	2	72	ā	킾	22	23	FI	ы	ΔĪ	2	72	DS	33	5	22	ы	E	Ы	9,	44	P4	7	교	VS
CCIDSROA	2020100	5510554	SS105994	SS106794	SS106194	SS106294	SS105794	SS105694	SS106994	SS107294	SS105994	SS107294	SS105694	SS106694	SS105594	SS105894	SS106894	SS106594	SS105394	SS105494	SS106394	SS106494	SS105794	SS106794	SS107294	SS105494	SS107194	SS105394	SS107094	SS106594	SS106694	SS106894	SS107294	SS106494	SS107294	SS106094	SS105894	SS106394	SS106194	SS106794	SS105994

SEMI-VOLATILE COMPOUNDS: RAW DATA

																																						,			
W 18 18 N	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330
W 8 7 7 8 W	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/L	UG/KG																																
	355	365	365	365	380	S	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350
22.88.83	4	-		-	_																				-						1	_	4								-
	>	7	>	>	>	Λ	۸	Λ	Λ	\ \	Λ	Λ	Λ	Λ	۸	۸	۸	Λ	۸	Λ	Λ	>	Λ	Λ	^	Λ	>	^	^	>	>	>	>	Λ	Λ	Λ	Λ	Λ	>	>	^
	5	b	Þ	n	D	U	_ n	Ω	Ŋ	n	n	U	n_	n	U	n	n	n	U	U	U	n	U	U	n	U	n	n	Û	Ω	n	n	D	n_	U	U	U	U	Ω	D	Ω
	92	730	730	730	98	10	019	089	089	089	069	069	069	069	069	069	069	700	200	710	710	710	710	730	730	730	760	10	0/9	089	089	089	9	069	069	069	069	069	069	, 20,	700
1131111111	710	730	730	730	760	10	0/9	089	680	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	10	0/9	089	089	680	069	069	069	069	069	069	069	700	700
444.1975	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE	INDENO(1,2,3-cd)PYRENE	ISOPHORONE	N-NITROSO-DI-n-PROPYLAMINE																																		
(1888)	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL	REAL	REAL																						
84.1418.58	SS00107EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00122EG	SS00123EG	SS00120EG	SS00103EG	SS00125EG	SS00112EG	SS00116EG	SS00117EG	SS00118EG	SS00115EG	SS00110EG	SS00107EG	SS00119EG	SS00111EG	SS00113EG	SS00108EG	SS00114EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00118EG	SS00117EG	SS00116EG	SS00120EG	SS00112EG	SS00103EG	SS00125EG	SS00115EG	SS00110EG
8.88	٧2	D6	KA	D3	D4	М	ī	D2	25	P6	72	Ы	Ы	9/	23	23	17	P4	44	72	P1	VS	7.7	23	20	٧3	7	М	ī	D2	P6	DS	17	23	Z	22	9,	Ы	ы	þ4	V4
TOCATION	SS105594	SS106294	SS105794	SS105694	SS106994	SS107294	SS105494	SS105394	SS107094	SS107194	SS106894	SS107294	SS107294	SS106094	SS106494	SS106594	SS106694	SS106394	SS105894	SS105594	SS106794	SS105994	SS106194	SS105694	SS106294	SS105794	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106694	SS106594	SS106494	SS106894	SS106094	SS107294	SS107294	SS106394	SS105894

SEMI-VOLATILE COMPOUNDS: RAW DATA

<i>(())</i>		, <u>-</u>	,	-,	_									_		_		· · · · ·		-1				_	_,										7	_		7	—	_
																																	_							
330		330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	2	330	330	330	330	330	330	330	_	_	330
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UGAL	UG/KG	UG/L	UG/KG																													
355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345
																																							4	4
>	>	Λ	Λ	۸	Λ	۸	۸	Λ	Λ	Λ	>	>	Λ	Λ	V	V	Λ	Λ	Λ	Λ	V	V	Λ	Λ	Λ	Λ	Λ	Λ	۸	^	Λ	Λ	Λ	Λ	Λ	Λ	۸	Λ	^	>
n D	n	U	U	U	U	U	U	U	Û	U	n	n	n	U	U	U	n	Û	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	n	n	U
710	710	710	710	730	730	730	09/	10	019	089	089	089	069	069	069	069	069	069	069	200	700	710	710	710	710	730	730	730	09/	10	0/9	680	089	089	069	069	069	069	069	069
710	710	710	710	730	730	730	760	10	0/9	089	089	680	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	09/	10	0/9	680	089	089	069	069	069	069	069	069
N-NITROSO-DI-PROPYLAMINE			N-NITROSO-DI-n-PROPYLAMINE	N-NITROSO-DI-n-PROPYLAMINE	N-NITROSO-DI-n-PROPYLAMINE		N-NITROSO-DI-n-PROPYLAMINE	N-NITROSODIPHENYLAMINE	NAPHTHALENE																															
OF CODE	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP																					
SSO0107EG	SS00113EG	SS00119EG	SS00111EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00125EG	SS00112EG	SS00103EG	SS00120EG	SS00118EG	SS00116EG	SS00117EG	SS00110EG	SS00115EG	SS00119EG	SS00111EG	SS00113EG	SS00107EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00122EG	SS00123EG	SS00105EG	SS00112EG	SS00116EG	SS00117EG	SS00118EG	SS00120EG	SS00103EG
^2	77	P1	۸۶	D3	N3	9 <u>0</u>	D4	Ы	D1	P6	D5	D2	Ы	9/	М	72		75	33	٧4	P4	P1	VS	77	V2	D3	V3	9Q	D4	M	D1	DS	<u>%</u>	D2	9/	PS	23	V1	P2	М
SS105594	SS106194	SS106794	SS105994	SS105694	SS105794	SS106294	SS106994	SS107294	SS105494	SS107194	SS107094	SS105394	SS107294	SS106094	SS107294	SS106894	SS106694	SS106494	SS106594	SS105894	SS106394	SS106794	SS105994	SS106194	SS105594	SS105694	SS105794	SS106294	SS106994	SS107294	SS105494	SS107094	SS107194	SS105394	SS106094	SS106494	SS106594	SS106694	SS106894	SS107294

SEMI-VOLATILE COMPOUNDS: RAW DATA

			<u> </u>	<u> </u>		Γ	Τ	Γ	T	Τ	1	T	Γ	Г	Г	Γ	T	Т	Ι	Γ	Τ	Γ	T	Т	Γ		T	I			Γ	Γ	Г	Γ	Τ	Г	Г	1	T	T	П
												TIC	TIC	TIC	TIC																							SUR	SUR	SUR	SUR
8 (1) 98	330	330	330	330	330	330	330	330	330	330	330					91	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	2	330	330	330
*** *** **	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	DZ/SO	UG/KG	%REC	%REC	%REC	%REC																												
*****	345	350	350	355	355	355	355	365	365	365	380	460	069	730	900	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	51	8	75	76
## ## ##	_																																							52	
					-		H			_								L	_			_	_		Н											L					
	_	>	^	>	^	^	^	Λ	>	^	Λ	Z	Z	Z	Z	^	^	Λ	۸	Λ	\	Λ	Λ	۸	Λ	^	Λ	>	>	^	^	^	Λ	Λ	Λ	Λ	Λ	Z	Z	2	7
*****	ם	ם	ם	D	ם	n	Ω	Ω	n	Ω	n	-	ſ	ſ	J	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	D	D	n	n	n	Ω	Ω	Ω	U	n				
	8	700	ğ	710	710	710	710	730	730	730	760	н.	11.11	12		10	0/9	089	089	680	9	069	069	069	069	690	069	700	700	710	710	710	710	730	730	730	160	***	444	##	***
N 18 18 18 18 18 18 18 18 18 18 18 18 18	069	700	700	710	710	710	710	730	730	730	09 <i>L</i>	460	069	730	006	10	670	089	089	089	069	069	069	069	069	690	069	700	700	710	710	710	710	730	730	730	760	51	99	75	76
	NAPHTHALENE			Naphthalene, 6,7-diethyl-1,2	Naphthalene, 6,7-diethyl-1,2	NITROBENZENE	NITROBENZENE-D5	NITROBENZENE-D5	NITROBENZENE-D5	NITROBENZENE-D5																															
2000	REAL	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL																												
	SS00125EG	SS00115EG	SS00110EG	SS00107EG	SS00119EG	SS00113EG	SS00111EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00119EG	SS00118EG	SS00111EG	SS00120EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00112EG	SS00116EG	SS00117EG	SS00118EG	SS00120EG	SS00103EG	SS00125EG	SS00110EG	SS00115EG	SS00107EG	SS00113EG	SS00119EG	SS00111EG	SS00109EG	SS00114EG	SS00108EG	SS00121EG	SS00124EG	SS00122EG	SS00125EG	SS00115EG
***	E	<u>P4</u>	4	22	Ы	۸۷	٧2	20	V 3	D3	7	PI	7	VS	22	Ы	Δ	P8	DS	DZ	9/	33	73	Z.	P2	М	E	۷4	P4	72	۸۲	ы	٧2	٧3	D6	D3	7	М	DŞ	Ы	P4
(O. 5.110).	SS107294	SS106394	SS105894	SS105594	SS106/94	SS106194	SS105994	SS106294	SS105794	SS105694	SS106994	SS106794	SS106694	SS105994	SS106894	SS107294	SS105494	SS107194	SS107094	SS105394	SS106094	SS106494	SS106594	SS106694	SS106894	SS107294	SS107294	SS105894	SS106394	SS105594	SS106194	SS106794	SS105994	SS105794	SS106294	SS105694	SS106994	SS107294	SS107094	SS107294	SS106394

ŧ : ፥ I į 1 ፥ = į ŧ : Ī : ፥ : : ፥ ĭ : : : : ž Ē : 1 ፤ : 12 79 82 83 8 8 63 8 8 72 75 92 8 2 82 83 83 **2** 82 82 82 8 8 88 22 8 হ 6 69 74 11 11 8 84 87 = NITROBENZENE-D5 NITROBENZENE-D5 NITROBENZENE-D5 NITROBENZENE-D5 NITROBENZENE-D5 NITROBENZENE-D5 NITROBENZENE-DS NITROBENZENE-DS NITROBENZENE-D5 NITROBENZENE-DS NITROBENZENE-DS NITROBENZENE-D5 NITROBENZENE-D5 NITROBENZENE-D5 NITROBENZENE-DS NITROBENZENE-DS NITROBENZENE-D5 NITROBENZENE-DS NITROBENZENE-DS • FLUOROPHENOL o-FLUOROPHENOL **№FLUOROPHENOL** • FLUOROPHENOL • FLUOROPHENOL **PELUOROPHENOL** o-FLUOROPHENOL • FLUOROPHENOL **PELUOROPHENOL PELUOROPHENOL PELUOROPHENOL PELUOROPHENOL** • FLUOROPHENOL **PFLUOROPHENOL** •FLUOROPHENOL • FLUOROPHENOL o-FLUOROPHENOL **o-FLUOROPHENOL PFLUOROPHENOI** o-FLUOROPHENOI

REAL REAL REAL REAL DUP

D\$

SS107094

SS107294

SS106494

D **P4**

SS105494 SS106394

VS 7 7

SS105994

P1

SS106794

SS106694

D2

SS105394

Ы

SS107294

RNS

SUR SUR SUR SUR SUR SUR SUR SUR

330 330

%REC

%REC

330 330 330

%REC

8

2

%REC %REC %REC

8

67 69 S 티 74 75

2

REAL REAL

2 7

SS105794

SS106994

REAL

REAL

D6

SS106294

М

SS107294

2 2

SS106594 SS106894

7

SS106194

REAL REAL REAL REAL

2 2 **D3** 7

SS107194 SS107194 SS105694

330

%REC

হ

SUR SUR SUR SUR SUR SUR SUR SUR SUR

330

%REC

22

%REC

330

%REC %REC %REC

92

77

11

o-FLUOROPHENO!

SS00110EG

SS105894

SS105594

SS00107EG

SS00108EG

SS00116EG

PS

SS106494

SS00111EG SS00123EG

٧5

SS105994

2

SS107194

330 330

%REC

78

%REC

%REC

330

SUR

330 330 330

%REC

%REC %REC SUR

330

%REC

8

%REC

8

22

SUR SUR SUR SUR SUR SUR

%REC

2

SEMI-VOLATILE COMPOUNDS: RAW DATA

TOCATION

SS105794 SS106994 REAL

SS00123EG SS00112EG SS00113EG

2

SS107194

7

9

SS106094

%REC

11 79 82 22 83

330

%REC

330 330

%REC %REC

SUR

330 330

%REC

83 84 84 8

83

330

%REC %REC SUR SUR

330 330

%REC %REC

%REC

330

%REC %REC %REC

8

330

₹ **%** 8 8

REAL

REAL REAL REAL REAL REAL REAL

SS105394 SS107194

REAL REAL

SS00108EG SS00106EG SS00117EG SS00105EG SS00123EG SS00118EG SS00119EG SS00111EG SS00116EG SS00124EG SS00122EG SS00106EG SS00115EG SS00105EG SS00103EG SS00109EG SS00121EG SS00113EG SS00114EG SS00125EG SS00117EG SS00120EG SS00123EG SS00123EG

SS00103EG

SS107294

SS105694 SS105494 SS106594

REAL REAL

REAL

SS00120EG SS00114EG SS00107EG SS00123EG

D8

SS106294

SS106894

72

SS105594

8 Ы D3 ۵ \mathbf{z} **D**5 8 7

SS107194

SS00110EG

7

SS105894

77

SS106194

330 330

%REC

330 330

%REC %REC %REC %REC

25

330 330

88

88

87

%REC %REC

93 20 52 63

SEMI-VOLATILE COMPOUNDS: RAW DATA

** *					_	_	Γ	т-	γ	_	Т	T		Τ	1	_	_			_	Т	r—		_	_				·				_		_	r		, -	_	Τ-	
	SUR	SUR	SUR																																						
	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	20	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
***	%REC	%REC	%REC	NG/L	UG/KG	UG/L	UG/KG	UG/KG	UG/KG																																
	81	81	81	5	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	25	1650	1700	1700	1700	1700	1700	1700	1700	1750	1750	1750	1750	1750	1750	1750
	4	4			_			_																																	
**	Z	Z	Z	Λ	Λ	Λ	Λ	Λ	٨	Λ	 >	Λ	Λ	۸	۸	۸	۸	>	۸	۸	۸	Λ .	۸	۸	۸	Λ	N.	Λ	Λ	Λ	^	^	۸	Λ	Λ	^	۸	۸	Λ	Λ	Λ
W () () ()	1			Ω	U	n l	U	n	Ω	n	n	U	U	ū	U	U	U	n	U	U	U	n l	n	U	U	Ω	U	U	U	Ω	D	ū	U	U	Ω	n	n	n	U	Ú	U
	•	Ī	± =	2	0/9	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	092	20	3300	3400	3400	3400	3400	3400	3400	3400	3500	3500	3500	3500	3500	3500	3500
8 8 8 B 8 8 8	- R	81	81	2	010	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	09/	50	3300		3400	3400		3400	3400	3400	3500	3500		3500	3500	3500	3500
						٩	9	9	9	9	9	9	9	9	9	7	7	<i>L</i>	7	7	7	1 7	7	7	7		33	3,	3,	3,	ž	3	3	3,	3:	3.	3.	3.	3.	3.	35
	o-FLUOROPHENOL	o-FLUOROPHENOL	o-FLUOROPHENOL	p-BROMODIPHENYL ETHER	PENTACHLOROPHENOL	PENTACHI, OROPHENOL	PENTACHI.OROPHENOL	PENTACHLOROPHENOL																																	
	KEAL.	REAL,	REAL	RNS	REAL.	REAL	REAL	REAL,	REAL	REAL,	DUP	REAL.	REAL.	REAL	RNS	REAL	REAL	DUP																							
	SS00119EG	SS00118EG	SS00112EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00117EG	SS00120EG	SS00103EG	SS00118EG	SS00125EG	SS00112EG	SS00116EG	SS00115EG	SS00110EG	SS00119EG	SS00107EG	SS00111EG	SS00113EG	SS00114EG	SS00108EG	SS00109EG	SS00121EG	SS00124EG	SS00106EG	SS00116EG	SS00117EG	SS00118EG	SS00112EG	SS00122EG	SS00105EG	SS00123EG	SS00107EG	SS00111EG	SS00113EG	SS00115EG	SS00110EG	SS00120EG	SS00103EG
,	Z	ī	9,	E	ī	38	DS	D2	13	72	M	V1	Ы	9/	73	P4	V4	P1	٧2	VS	٧٧	26	D3	V 3	D4	М	D1	Z.	3	Ιλ	9	DŞ	D2	3	V2	VS	۸۷	P4	٧4	72	М
100000000000000000000000000000000000000	55106/94	SS106694	SS106094	SS107294	SS105494	SS107194	SS107094	SS105394	SS106594	SS106894	SS107294	SS106694	SS107294	SS106094	SS106494	SS106394	SS105894	SS106794	SS105594	SS105994	SS106194	SS106294	SS105694	SS105794	SS106994	SS107294	SS105494	SS106494	SS106594	SS106694	SS106094	SS107094	SS105394	SS107194	SS105594	SS105994	SS106194	SS106394	SS105894	SS106894	SS107294

SEMI-VOLATILE COMPOUNDS: RAW DATA

																																							$\overline{\ }$	
1600	1600	1600	1600	1600	1600	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/L	UG/KG	UG/L	UG/KG	UG/KG																														
1750	1750	1800	1800	1850	1900	5.	335	340	340	340	345	345	345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	5	335	340	340	340	345	345	345	345	345	345	345	350
>	^	Λ	^	Λ	Λ .	۸	۸	Λ	Λ	Λ	۸	Λ	Λ	^	Λ	۸	۸	۸	۸	Λ	^	^	۸	Λ	Λ	^	^	Λ	^	Λ	Λ	Λ	Λ	Λ	۸	۸	^	۸	Λ	Λ
n	Ū	U	U	U	U	U	U	U	Û	U	U	U	Ω	Ú	Û	U	U	U	Ú	Ω	Ŋ	D	Û	Û	n	Û	U	n	Ú	Ω	n	n	U	U	U	U	U	U	U	U
3500	3500	3600	3600	3700	3800	10	0/9	089	089	089	069	069	069	069	069	069	069	200	700	710	710	710	710	730	730	730	160	10	0/9	089	089	089	069	069	069	069	069	069	069	700
3500	3500	3600	3600	3700	3800	10	019	089	089	089	069	069	069	069	069	069	069	700	700	710	710	710	710	730	730	730	160	10	019	089	089	089	069	069	069	069	069	069	069	700
PENTACHLOROPHENOL	PENTACHLOROPHENOL	PENTACHLOROPHENOL	PENTACHLOROPHENOL.	PENTACHLOROPHENOL	PENTACHLOROPHENOL	PHENANTHRENE	PHENOL	PHENOL																																
REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL																		
SS00125EG	SS00119EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00120EG	SS00116EG	SS00117EG	SS00112EG	SS00118EG	SS00103EG	SS00125EG	SS00115EG	SS00110EG	SS00107EG	SS00111EG	SS00113EG	SS00119EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00124EG	SS00106EG	SS00105EG	SS00123EG	SS00122EG	SS00103EG	SS00125EG	SS00117EG	SS00116EG	SS00118EG	SS00112EG	SS00120EG	SS00115EG
P7	P1	N3	D3	<u>D</u>	D4	Ъ.	D1	D2	%	DS	72	P5	73	9/	V1	М	Ы	P4	V4	7.7	٧۶	7.7	P1	V3	D3	D6	D4	P7	DI	D2	P6	DS	М	P7	Ъ	PS	V1	9/	P2	P4
SS107294	SS106794	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS106894	SS106494	SS106594	SS106094	SS106694	SS107294	SS107294	SS106394	SS105894	SS105594	SS105994	SS106194	SS106794	SS105794	SS105694	SS106294	SS106994	SS107294	SS105494	SS105394	SS107194	SS107094	SS107294	SS107294	SS106594	SS106494	SS106694	SS106094	SS106894	SS106394

SEMI-VOLATILE COMPOUNDS: RAW DATA

	7	Т	_	Т	Т	T	Т	Т	Т	T	Т	_	_	1	_	Γ-	Т		Г	Г	_	1	_	Τ-	ι –	ı						1	_	_	1	Ţ-		T	_	\Box
									SUR	SUR	SUR	SUR	SUR	SUR	SUR	TIC																								
	330	330	330	330	330	330	330	330	01	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330		10	330	330	330	330	330	330
	UG/KG	UG/KG	UG/KG	UQ/NO 11C/NC	11G/KG	UG/KG	UG/KG	UG/KG	%REC	%REC	%REC	%REC	%REC	%REC	%REC	UG/KG	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG																	
	350	355	333	355	365	365	365	380	50	62	72	73	74	74	75	75	76	76	76	77	11	11	78	78	79	79	80	81	81	82	82	83	470	5	335	340	340	340	345	345
**														25										52																
	4	1	1		L	L	L	L																																
	>	> :)	>	>	>	>	>	Z	Z	Z	Z	Z	Z	Z	Z	Y	Z	Z	Y	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	2	Z	^	Λ	Λ	^	۸	^	۸
			1		5	b	ם	Þ																									ſ	n	Ω	Ω	n	Ω	n	Ω
	3	710	710	210	730	730	730	760	***	1	11 11		12		***	I	***	и,,	***	***			44	11 11		1111	11			##	44	**	444	10	670	680	680	680	690	069
E BACH	3	710	710	710	730	730	730	760	50	62	72	73	74	74	75	75	76	76	76	77	77		78	78	79	79	80	81	81	82	82	83	470	10	0/9	089	089	089	069	069
PITENCY		PHENOL	PHENOL	PHENOL	PHENOL	PHENOL	PHENOL	PHENOL	PHENOL-D5	PHENOL-D5	PHENOL-D5	PHENOL-D5	PHENOL-D5	PHENOL-D5	PHENOL-D5	PHOSPHONIC ACID, DIOCTADECYL	PYRENE																							
DEAL	100	PEAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL											
SS00110EG	20110000	SSOOTOFF	SS00113EG	SS00111EG	SS00114EG	SS00109EG	SS00108EG	SS00121EG	SS00124EG	SS00122EG	SS00121EG	SS00106EG	SS00105EG	SS00125EG	SS00114EG	SS00115EG	SS00123EG	SS00120EG	SS00108EG	SS00123EG	SS00113EG	SS00103EG	SS00109EG	SS00123EG	SS00111EG	SS00107EG	SS00117EG	SS00110EG	SS00118EG	SS00116EG	SS00119EG	SS00112EG	SS00105EG	SS00124EG	SS00106EG	SS00123EG	SS00122EG	SS00105EG	SS00116EG	SS00117EG
ν.	i	2 2	1/4	V 5	D6	V3	D3	D4	М	DS	D4	ī	D2	A	20	P4	P2	12	13	2	77	A	٨3	ጀ	\$	V 2	3	44	5	PS	F	9	D2	A	ā	ድ	52	D2	X.	3
SC105804 VA	66106704	\$51005504	\$\$106194	SS105994	SS106294	SS105794	SS105694	SS106994	SS107294	SS107094	SS106994	SS105494	SS105394	SS107294	SS106294	SS106394	SS107194	SS106894	SS105694	SS107194	SS106194	SS107294	SS105794	SS107194	SS105994	SS105594	SS106594	SS105894	SS106694	SS106494	SS106794	SS106094	SS105394	SS107294	SS105494	SS107194	SS107094	SS105394	SS106494	SS106594

SEMI-VOLATILE COMPOUNDS: RAW DATA

															SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	TIC	TIC						
330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	10	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330	330		
UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC	UG/KG	UG/KG						
345	345	345	345	345	350	350	355	355	355	355	365	365	365	380	77	83	88	90	92	93	93	94	94	95	96	96	96	62	86	86	66	99	101	101	102	102	104	108	290	300
																											52					52								
۸						,	,	,	/			,	,	/	2	7							,	7								z		Z		Z	Z	7	Z	Z
22	\ 	^	^	^	Λ	^	^	^	Λ	_ _ v	^	Λ	Λ	^	7	7	Z	Y	Y	Z	\overline{z}	2	Z	\mathbf{z}		Z	7	Z	Z	Z	\mathbf{z}	7	Z	7	Z Z	2	7			
U	U	U	U	U	U	U	U	U	U	U	U	U	U	U												Ц										Ш		Ц		
069	069	069	069	069	700	700	710	710	710	710	730	730	730	760	***	:				Ē			""	**	:	:	: :			##	##	1	4 14	***		##	444	ŧ	H	=
690	069	069	069	069	700	700	710	710	710	710	730	730	730	760	77	83	88	06	92	93	93	94	94	95	96	96	96	62	86	86	66	66	101	101	102	102	104	108	290	300
9	PYRENE	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	TERPHENYL-D14	Unknown	Tinknown																			
REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	PFAI																							
	SS00112EG	SS00103EG	SS00125EG	SS00118EG	SS00110EG	SS00115EG	SS00107EG	SS00111EG	SS00113EG	SS00119EG	SS00109EG	SS00108EG	SS00114EG	SS00121EG	SS00122EG	SS00124EG	SS00121EG	SS00123EG	SS00123EG	SS00107EG	SS00108EG	SS00114EG	SS00120EG	SS00105EG	SS00111EG	SS00103EG	SS00123EG	SS00106EG	SS00113EG	SS00117EG	SS00112EG	SS00125EG	SS00110EG	SS00116EG	SS00119EG	SS00118EG	SS00115EG	SS00109EG	SS00125EG	CCOOLLEG
72	9/	М.	P7	V1	٧4	P4	V2	V5	L/A	P1	V3	D3	D6	D4	DS	М	D4	%	32	V2	D3	D6	P2	D2	VS	Ы	P6	D1	7.7	ВЗ	9.0	P7	V4	PS	P1	VI	P4	N3	М.	3/2
SS106894	SS106094	SS107294	SS107294	SS106694	SS105894	SS106394	SS105594	SS105994	SS106194	SS106794	SS105794	SS105694	SS106294	SS106994	SS107094	SS107294	SS106994	SS107194	SS107194	SS105594	SS105694	SS106294	SS106894	SS105394	SS105994	SS107294	SS107194	SS105494	SS106194	SS106594	SS106094	SS107294	SS105894	SS106494	SS106794	SS106694	SS106394	SS105794	SS107294	66105004

SEMI-VOLATILE COMPOUNDS: RAW DATA

	2	TIC																																							
****	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
	B)S	310	310	310	320	320	330	330	330	330	340	340	340	350	350	350	350	350	350	350	350	370	370	380	380	390	390	390	400	410	410	420	420	430	430	430	430	430	430	440	440
	$\frac{1}{1}$	4																												-		_								-	4
	7	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	2	2	Z	Z	2	Z	Z	Z	Z	Z	7	Z	Z	Z	2	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	7	7	Z	7
	1	-	J	_	J	J	J	J	J	J	J	J	J	J	J	J	J _	J	J	J	J	J	J	J	J	J	7	J	Б	-	-	-	-	J	J	J	ī	-	ĵ	-	-
		1	±	:	1	**	88	**	111	##		11				44			н н			нн	##			111	11 11		:	:	<u> </u>	:	:		11.11		I	Ę	un	:	:
	3	310	310	310	320	320	330	330	330	330	340	340	340	350	350	350	350	350	350	350	350	370	370	380	380	390	390	390	400	410	410	420	420	430	430	430	430	430	430	440	440
ARALVIE	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
1000000	KEAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL																														
84.000	SS00105EG	SS00112EG	SS00105EG	SS00107EG	SS00108EG	SS00111EG	SS00113EG	SS00119EG	SS00119EG	SS00105EG	SS00122EG	SS00111EG	SS00120EG	SS00105EG	SS00118EG	SS00120EG	SS00112EG	SS00125EG	SS00119EG	SS00103EG	SS00111EG	SS00114EG	SS00113EG	SS00108EG	SS00118EG	SS00107EG	SS00103EG	SS00121EG	SS00123EG	SS00117EG	SS00107EG	SS00118EG	SS00114EG	SS00105EG	SS00120EG	SS00125EG	SS00117EG	SS00107EG	SS00111EG	SS00108EG	SS00116EG
	77	9/	D2	V2	D3	VS	7.7	P1	PI	D2	DS	٧۶	72	D2	I'A	72	9/	Ы	Id	Ы	VS	90	1/4	23	۲۱	72	ы	74	æ	ы	V2	Vi	9Q	D2	72	Ы	P3	V2	VS	D3	P5
KOLVEO	SS105394	SS106094	SS105394	SS105594	SS105694	SS105994	SS106194	SS106794	SS106794	SS105394	SS107094	SS105994	SS106894	SS105394	SS106694	SS106894	SS106094	SS107294	SS106794	SS107294	SS105994	SS106294	SS106194	SS105694	SS106694	SS105594	SS107294	SS106994	SS107194	SS106594	SS105594	SS106694	SS106294	SS105394	SS106894	SS107294	SS106594	SS105594	SS105994	SS105694	SS106494

SEMI-VOLATILE COMPOUNDS: RAW DATA

***************************************	TIC																																								
Man Name	UG/KG																																								
*********	440	440	450	450	450	460	460	460	460	460	470	470	470	480		490	490	200	200	200	200	200	200	510	520	520	520	520	530	530	530	540	540	540	550	999	260	570	590	290	290

N. 2.3 W. 12.3	Z	Z	Z	2	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	2	Z	Z	Z	7	7	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
8 () () ()	_	J	J	J	J	J	J	J	ĵ	J	J	J	J	J	J	J	ſ	J	J	J	ſ	J	J	J	J	l í	J	J	J	J	J	J	J	J	l í	J	J	J	J	J	-
		**	##	14 10	444	##		1111	***	***	144	и и	***	44	***	44	***	##	44	**		1111		**	114	не	***	##		**	4.0		814	1111	***	***	414		11	##	:
NEW STREET	440	440	450	450	450	460	460	460	460	460	470	470	470	480	480	490	490	200	500	500	500	200	200	510	520	520	520	520_	530	530	530	540	540	540	550	260	260	570	590	590	290
ANALTIE	Unknown																																								
(0.00)	REAL																																								
SAMPLES	SS00106EG	SS00112EG	SS00105EG	SS00114EG	SS00123EG	SS00116EG	SS00117EG	SS00115EG	SS00117EG	SS00117EG	SS00114EG	SS00115EG	SS00125EG	SS00112EG	SS00105EG	SS00108EG	SS00112EG	SS00110EG	SS00120EG	SS00119EG	SS00116EG	SS00123EG	SS00112EG	SS00119EG	SS00119EG	SS00115EG	SS00120EG	SS00108EG	SS00115EG	SS00109EG	SS00113EG	SS00110EG	SS00110EG	SS00109EG	SS00114EG	SS00115EG	SS00116EG	SS00112EG	SS00117EG	SS00119EG	SS00115EG
	ī	9/	D2	D8	8	73	B	P4	ВЗ	РЗ	D6	P4	P7	9/	D2	D3	9/	V4	P2	P1	P5	P6	9.0	P1	P1	P4	P2	D3	P4	V3	V7	V4	V4	V3	90	P4	P5	9/	ВЗ	P1	P4
TOCATION	SS105494	SS106094	SS105394	SS106294	SS107194	SS106494	SS106594	SS106394	SS106594	SS106594	SS106294	SS106394	SS107294	SS106094	SS105394	SS105694	SS106094	SS105894	SS106894	SS106794	SS106494	SS107194	SS106094	SS106794	SS106794	SS106394	SS106894	SS105694	SS106394	SS105794	SS106194	SS105894	SS105894	SS105794	SS106294	SS106394	SS106494	SS106094	SS106594	SS106794	SS106394

SEMI-VOLATILE COMPOUNDS: RAW DATA

99995 [_	_		_	_			_						_	_					_			_					_										_			
33.1	ĭ E	Ţ	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC											
								-																																	
N S S S S S S S S S S S S S S S S S S S	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG													
	590	009	900	009	009	610	610	019	620	630	059	650	099	099	099	019	069	700	710	720	740	780	790	790	830	840	850	870	880	890	890	920	940	940	096	970	086	1000	1000	1000	1000
	1											_	_	_		_			Н								_												П		
	Z	Z	7	Z	2	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	2	Z	2	Z	Z	7	7	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
	-	-	J	-	1	ſ	ſ	ſ	J	ſ	ſ	J	ſ	J	J	ĵ	J	J	J	J	J	J	ſ	J	ĵ	J	ĵ	ſ	J	-	J	-	ſ	ſ	ſ	ſ	ſ	ſ	_	-	
1					444	**	##		n t	***		##	***	นน	11			1 2	***		***	***	11.11			11.11	444	***	444		##		1	**	***	***	# #	##	##	1	4 2
CHALL ROLD LINE ALTERNATION IN THE TYLE TRUE HE LEERINGE	290	009	009	009	909	610	610	610	620	630	650	650	099	099	099	019	069	700	710	720	740	780	790	790	830	840	850	870	880	890	890	920	940	940	096	970	086	1000	1000	1000	1000
ARAL TTE	Unknown	Unknown	Unknown	Unknown	UNKNOWN	UNKNOWN	Unknown	Unknown	Unknown	Unknown	UNKNOWN	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	UNKNOWN	Unknown	Unknown	Unknown	Unknown	Unknown													
¥11000000	REAL	REAL	REAL	REAL	REAL		REAL	REAL	REAL		REAL	REAL	REAL		REAL																										
4.14.78	SS00111EG	SS00114EG	SS00110EG	SS00111EG	SS00118EG	SS00117EG	SS00108EG	SS00110EG	SS00120EG	SS00119EG	SS00120EG	SS00108EG	SS00117EG	SS00113EG	SS00110EG	SS00115EG	SS00115EG	SS00109EG	SS00109EG	SS00123EG	SS00119EG	SS00119EG	SS00118EG	SS00109EG	SS00115EG	SS00112EG	SS00114EG	SS00110EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00105EG	SS00108EG	SS00110EG	SS00109EG	SS00110EG	SS00114EG	SS00112EG	SS00118EG	SS00118EG
XXXX	^	D8	V4	VS	1/1	ы	D3	۷4	12	PI	72	D3	33	<i>L</i> Λ	V4	P4	P4	V3	V3	P6	P1	P1	V1	V3	P4	9/	D6	V4	P4	P5	Ы	VI	D2	D3	44	٨3	V4	De	9.0	VI	5
ALIB NOLLY OF	SS105994	SS106294	SS105894	SS105994	\$8106694	SS106594	SS105694	SS105894	SS106894	SS106794	SS106894	SS105694	SS106594	SS106194	SS105894	SS106394	SS106394	SS105794	SS105794	SS107194	SS106794	SS106794	SS106694	SS105794	SS106394	SS106094	SS106294	SS105894	SS106394	SS106494	SS106594	SS106694	SS105394	SS105694	SS105894	SS105794	SS105894	SS106294	SS106094	SS106694	SS106694

Unknown Unknown Unknown

REAL

Unknown

REAL

Unknown Unknown Unknown

REAL

E E E E E E E E E E

SS106294 SS105694 SS105494

SS105794 SS105394 SS106494 SS106794

SS106594

REAL REAL

Unknown

Unknown

REAL REAL REAL

SS00111EG SS00113EG SS00111EG SS00108EG SS00109EG SS00114EG SS00108EG SS00117EG SS00106EG SS00109EG SS00105EG SS00116EG SS00119EG SS00115EG SS00110EG SS00105EG SS00110EG SS00103EG

75

SS105994 SS106194

77

2 2 2 2

SS105994

SS105694 SS105794

SS00120EG

SS106894 SS106894

Ы

SS106794

Unknown

TIC.

TIC

TIC

UG/KG UG/KG

UG/KG

52

<u>1B</u>

፤

1400

Æ

IC

35

UG/KG

UG/KG

22

æ

1300

1400 1400 1400

2 2

25

田田田

UG/KG UG/KG UG/KG

UG/KG

1300 1300 1400 1400 1400 1400

22

12

UG/KG

1300

UG/KG

1300

22

2

四四

: :

Ī

UG/KG

1300

UG/KG

TIC

UG/KG

UG/KG

Z

Unknown

Unknown

DUP

Jaknown

Unknown

٧4

SS106394 SS105894 3 4 2

SS105394

SS107294

SS105894

UG/KG

UG/KG

\$ \$ \$ \$ \$

22

22

JB

1400 1500 1500

Unknown

REAL

Unknown

Jnknown

REAL

E

፤

UG/KG

TIC

UG/KG

* (1)

1100 1100 1100 1100 1200

... 222 TC

TIC

UG/KG

1200

UG/KG

2 2

æ

:

1200 1200

:

:

:

=

1200

ž

UG/KG UG/KG

1200

UG/KG

1200

UG/KG UG/KG

1200

IIC

UG/KG

1300

UG/KG

22

UG/KG

30 30 30 30

:

1300

2

\$

ŧ

1300 1300 1300 1300 1300 1300

Unknown Unknown

Unknown

REAL

UG/KG

22

UG/KG

IIC

UG/KG

UG/KG

UG/KG

1200 1200

UG/KG

52

8

፤

:

:

1200 1200 1200 1200 1200 1200 1200

:

UNKNOWN

Unknown Unknown

REAL

SS00112EG

9

23

SS106294 SS105794 SS106094 SS00116EG SS00116EG

 $\Sigma|\Sigma|$

SS106494 SS106494

Unknown

REAL

SS00114EG SS00109EG

Unknown

Unknown

SS00118EG

SS106694

SS00114EG

2 2

SS106294

Unknown

REAL

SS00112EG

9/

짇

SS00122EG

D5 1

000000

SS00107EG

LOCATION

SS105594 SS106994 SS106094 SS107094

SEMI-VOLATILE COMPOUNDS: RAW DATA

Unknown

Unknown

SS00123EG

22

SS107194

SS105594

SS00107EG SS00118EG SS00114EG

Unknown

Unknown

Unknown Unknown Unknown

REAL

REAL REAL

SS00125EG

Z

SS107294

SS107294

\$\$00125EG \$\$00118EG \$\$00122EG \$\$00129EG \$\$00120EG

지

SS106694

SS107094

SS00106EG

DI

SS105494

2

7

SS106694 SS106294

Unknown

UG/KG

UG/KG UG/KG

1200

52

2

SEMI-VOLATILE COMPOUNDS: RAW DATA

	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC	TIC																														
10.00	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG																														
**************************************		1500 UC	1500 UC	1500 UC	1500 UC	1600 UC	1600 UC	H	1600 UC		1700 UC		1700 UC	1800 UC	1800 UC	1900 UG	2000 UG	2200 UG	2400 UG	2600 UG	3200 UG	-	3400 UG	3600 UG	3600 UG	3700 UG	4200 UG	4400 UG	4400 UG	5800 UG	8000 UG	9700 UG	0086 UG	12000 UG	14000 UG	16000 UG	310 UG				340 UG
	52			52		52				52							_						6,			-	7	7	4	;	8	5	5	1	1	-	_				
											\vdash															-									-		_			Н	\dashv
	Z	Z	Z	Z	Z	Z	Z	Z	2	Z	2	Z	Z	Z	2	Z	2	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
******	JB	-	J	JB	J	JB	JB	J	_ ī	JB	J	J	J	J	J	J	J	J	J	J	J	ſ	J	J	J	J	J	J	J	J	J	J	J	J	J	J	ì	J	ĵ	-	1
3 (1)		::	:	ин	1141	1944	44	***	1111		414	##			11		n n	411	***			***	**	***	***	***	44	===	:		:	#.	1		***	***	***			: :	
**************************************	1500	1500	1500	1500	1500	1600	1600	1600	1600	1600	1700	1700	1700	1800	1800	1900	2000	2200	2400	2600	3200	3300	3400	3600	3600	3700	4200	4400	4400	5800	8000	9700	9800	12000	14000	16000	310	320	330	330	340
ANALYTE	Unknown	Unknown	Unknown	UNKNOWN	Unknown	Unknown	Unknown ALKANE																																		
(0.000)	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	DUP	REAL	REAL.	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL															
83.19.58	SS00110EG	SS00115EG	SS00117EG	SS00113EG	SS00116EG	SS00121EG	SS00103EG	SS00125EG	SS00105EG	SS00112EG	SS00118EG	SS00103EG	SS00123EG	SS00125EG	SS00125EG	SS00110EG	SS00123EG	SS00109EG	SS00120EG	SS00115EG	SS00111EG	SS00113EG	SS00119EG	SS00118EG	SS00116EG	SS00116EG	SS00120EG	SS00112EG	SS00110EG	SS00117EG	SS00110EG	SS00115EG	SS00116EG	SS00109EG	SS00117EG	SS00118EG	SS00113EG	SS00112EG	SS00111EG	SS00120EG	SS00119EG
88.88	V4	조	2	7.7	Z.	74	ы	М	D2	9%	Z	B	æ	E	ы	۷4	፳	λ3	22	점	٧5	7.7	Ы	ΛI	PS	æ	22	9,	44	3	V 4	P4	æ	λ3	33	٧1	V7	Λ6	VS	12	F
NOTATION	SS105894	SS106394	SS106594	SS106194	SS106494	SS106994	SS107294	SS107294	SS105394	SS106094	SS106694	SS107294	SS107194	SS107294	SS107294	SS105894	SS107194	SS105794	SS106894	SS106394	SS105994	SS106194	SS106794	SS106694	SS106494	SS106494	SS106894	SS106094	SS105894	SS106594	SS105894	SS106394	SS106494	SS105794	SS106594	SS106694	SS106194	SS106094	SS105994	SS106894	SS106794

630 080 069 \$ 8 8 8 \$ 8 8 510 570 610 650 80 80 8 380 390 8 5 \$ 8 취원 450 450 490 520 570 8 610 610 620 620

ŧ

: į

፤

110

UG/KG UG/KG

690

Z

: :

UG/KG UG/KG

88

UG/KG

UG/KG

UG/KG

650

110

UG/KG

8

UG/KG UG/KG

620

N

፥

:

Unknown ALKANE

Unknown ALKANE

REAL

SS00108EG

D3

SS105694

PS

REAL

Unknown ALKANE Unknown ALKANE

REAL

REAL

SS00122EG SS00103EG

REAL

SS00117EG SS00118EG

 \mathbf{Z} 7 D5 Ы 73

SS106594 SS106694 SS107094 SS107294 SS106494 SS105494 SS105694 SS105494

Unknown ALKANE

Unknown ALKANE Unknown ALKANE Unknown ALKANE Unknown ALKANE

REAL

SS00106EG

REAL

REAL

SS00106EG SS00108EG

DI

D3 D

SS00116EG

Unknown ALKANE

Unknown ALKANE

REAL

DS

Unknown ALKANE

일

% ##

UG/KG UG/KG TIC

TIC

UG/KG UG/KG

į

: ž :

350

Unknown ALKANE

LOCATION

SEMI-VOLATILE COMPOUNDS: RAW DATA

UG/KG

350 370 8 8 중 육

UG/KG

UG/KG UG/KG

TIC

TIC

TIC

UG/KG

፥ ፥

Unknown ALKANE Unknown ALKANE

Unknown ALKANE Unknown ALKANE Unknown ALKANE

Unknown ALKANE

REAL

SS00121EG SS00121EG SS00112EG SS00121EG SS00122EG SS00119EG SS00107EG SS00112EG SS00112EG SS00109EG SS00116EG SS00117EG SS00111EG SS00115EG SS00107EG SS00121EG SS00105EG SS00111EG SS00110EG SS00105EG SS00109EG SS00125EG SS00117EG SS00125EG SS00116EG SS00110EG SS00109EG SS00125EG SS00122EG SS00116EG

26 7 7

SS106294

SS106994 SS106994 SS106094 SS106994 SS107094 SS106794 SS105594

SS106594

7

Unknown ALKANE Unknown ALKANE

REAL

8 9/

SS106094

Unknown ALKANE

REAL REAL

Ы ? Unknown ALKANE Unknown ALKANE Unknown ALKANE Unknown ALKANE Unknown ALKANE Unknown ALKANE Unknown ALKANE

> REAL REAL REAL REAL REAL REAL REAL

 $\mathbb{Z}[\mathfrak{Z}]$ **5**

> SS106594 SS105994 SS106394

V3

SS105794 SS106494

SS106094

Unknown ALKANE

REAL REAL

UG/KG

UG/KG

8 8 8

UG/KG

430

UG/KG

Z

፤

: :

2

110

TIC

UG/KG UG/KG

UG/KG

TIC

TIC TIC

UG/KG

UG/KG

UG/KG

UG/KG

UG/KG

TIC

TIC

110

TIC

UG/KG

UG/KG

UG/KG

UG/KG

:

:

:

Unknown ALKANE Unknown ALKANE

REAL

٧5 7

D2

SS105394 SS105994

SS106994

V2 7

SS105594

P4

REAL

D2 23

SS105894 SS105394 REAL

Ī

Unknown ALKANE

Unknown ALKANE Unknown ALKANE Unknown ALKANE

Unknown ALKANE

REAL REAL

2

SS106594

Ы

SS107294

Z

SS107294

SS105794

REAL

Unknown ALKANE Unknown ALKANE

REAL

REAL REAL

٧3

SS105794 SS107294 SS107094 SS106494

Ы

REAL

PS 7

SS106494 SS105894

Unknown ALKANE

TIC IC

UG/KG

8

UG/KG UG/KG

610 610

UG/KG

UG/KG

UG/KG

TIC

SEMI-VOLATILE COMPOUNDS: RAW DATA

	TIC																																								
A COLOR	UG/KG																																								
W * W * Y * Y * W * W		700	700	720	730	740	T				870	Γ	920	F	056	096	086	1000	1000	1100	1100	1100	1200	1200	1200	1200	1200	1300	1300	1300	1300	1300	1400	1400	1400	1500	1500	1500	1500	1600	1600
	Z	Z	Z	Z	Z	Z	2	Z	Z	Z	Z	Z	Z	Z	Z	7	Z	Z	Z	7	Z	7	Z	7	Z	Z	7	Z	Z	7	Z	Z	Z	Z	Z	Z	7	7	7	Z	7
1810	-	-	J	J	J	J	_	ĵ	ſ	-	J	'n	J	J	J	J	J	J	J	J	J	J	_ J	J	J	J	J	-	J	ĵ	1	J	J	J	J	J	J	J	J	J	
101	-	1	1	444	11 11	##	I I	2 2	#	:		##	***	4 11		===		**	***	:	нн	I	***	ии	***		***	I t	**	:	:			**		**	111	uu	***	:	:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	069	700	700	720	730	740	750	750	800	870	870	870	920	950	950	096	086	1000	1000	1100	1100	1100	1200	1200	1200	1200	1200	1300	1300	1300	1300	1300	1400	1400	1400	1500	1500	1500	1500	1600	1600
AKALTIE	Unknown ALKANE																																								
X ((X X X))	REAL	DUP	REAL		REAL	REAL	REAL	REAL										REAL		REAL		REAL		REAL																	
AFTANYS.	SS00119EG	SS00103EG	SS00120EG	SS00121EG	SS00110EG	SS00118EG	SS00105EG	SS00120EG	SS00109EG	SS00107EG	SS00112EG	SS00111EG	SS00114EG	SS00115EG	SS00113EG	SS00115EG	SS00114EG	SS00119EG	SS00120EG	SS00125EG	SS00125EG	SS00105EG	SS00117EG	SS00109EG	SS00115EG	SS00120EG	SS00121EG	SS00115EG	SS00106EG	SS00120EG	SS00110EG	SS00117EG	SS00112EG	SS00119EG	SS00121EG	SS00105EG	SS00109EG	SS00107EG	SS00113EG	SS00103EG	SS00111EG
	Ē	2	2	Ā	44	V1	D2	72	V3	V2	γ	VS	28	P4	٨.	P4	<u>D</u> 6	P1	72	Ы	Ы	D2	B	٨3	P4	Z	D4	PA	ā	Z	٧4	33	9	Ā	<u>7</u>	D2	V 3	72	7.7	М	75
LOCATION	SS106794	SS107294	SS106894	SS106994	SS105894	SS106694	SS105394	SS106894	SS105794	SS105594	SS106094	SS105994	SS106294	SS106394	SS106194	SS106394	SS106294	SS106794	SS106894	SS107294	SS107294	SS105394	SS106594	SS105794	SS106394	SS106894	SS106994	SS106394	SS105494	SS106894	SS105894	SS106594	SS106094	SS106794	SS106994	SS105394	SS105794	SS105594	SS106194	SS107294	SS105994

SEMI-VOLATILE COMPOUNDS: RAW DATA

2.400.81	TIC																									
8.00	93	(G	KG D	KG D	(G)	(G	(G	(S)	93	KG D	193	93	te	93	S	Si	93	93	93	£G	S	S	KG 5	£G.	CG S	CG
	UG/KG																									
***************************************	1600	1700	1700	1700	1700	1700	1800	1900	2000	2000	2100	2100	2200	2200	2200	2300	2700	2800	2800	3000	3000	3100	3700	3700	3900	8300
	Z	Z	7	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	7	Z	Z	Z	Z	Z	7	Z	Z	Z	Z	Z
***	J	J	J_T]_[J	J	J_	J	J	J	J	J	J	J	J	J_L	J	J	J	J	J	J	J	J	J	1
	""	**					***	***					**			111	4 11			**				111		
	Н		Н		Ц																					
NEWS CO.	1600	1700	1700	1700	1700	1700	1800	1900	2000	2000	2100	2100	2200	2200	2200	2300	2700	2800	2800	3000	3000	3100	3700	3700	3900	8300
SAAT NAY.	Unknown ALKANE																									
	REAL	DUP	REAL																							
LOCATION MITE BARNESS	SS00117EG	SS00103EG	SS00112EG	SS00108EG	SS00107EG	SS00116EG	SS00115EG	SS00111EG	SS00119EG	SS00120EG	SS00115EG	SS00116EG	SS00105EG	SS00110EG	SS00109EG	SS00108EG	SS00117EG	SS00114EG	SS00119EG	SS00112EG	SS00118EG	SS00115EG	SS00109EG	SS00114EG	SS00116EG	SS00118EG
8.33	B	ы	9/	D3	۸2	PS	P4	VS	Pı	P2	P4	PS	D2	V4	V3	D3	P3	D6	P1	9/	V1	P4	V3	D6	PS	V1
TOTAL STREET	SS106594	SS107294	SS106094	SS105694	SS105594	SS106494	SS106394	SS105994	SS106794	SS106894	SS106394	SS106494	SS105394	SS105894	SS105794	SS105694	\$\$106594	SS106294	SS106794	SS106094	SS106694	SS106394	SS105794	SS106294	SS106494	SS106694

PESTICIDES AND PCBS

This section contains the raw data spreadsheets for pesticide and PCB compounds. They are organized as indicated in the introduction of Appendix B, except the site, IDL, unit and CRDL columns have been eliminated. There is also only one result column.

B-5

2282																																									
7.73	^	۸	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	^	۸	^	>	^	>	>	۸	۸	^	^	^	^	>	>	>	>	>	۸	۸	>
2.3.1	U	כ)	J	Э	>	D	ח	b	Þ	b	כ	Э	Þ	>	Þ	n	D	Э	Э	n	n	n	Þ	n	⊃	n	n	n	D	ח	n	n	D	Э	Э	n	n	n	ח	n
	33	32	34	35	35	34	34	33	34	36	34	33	33	33	34	34	37	33	33	34	34	0.1	33	32	34	35	35	34	34	33	34	36	34	33	33	33	34	34	37	33	33
AMIYTE	4,4'-DDD	4,4'-DDE																																							
34.4	TRG			TRG						٦	TRG		T	TRG																											
Become	REAL	DUP	REAL	RNS	REAL																																				
SAMMER	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00125EG	SS00124EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG
LOCATION	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194

PESTICIDES AND PCBs:RAW DATA

***		Г	Т	Τ-	T	T	T	T	7	T T	Γ.	Т	_	_	T	_	т-	T	Ţ	Т-	F	_	_	_	T	_	_	_	_	_		r	_	Г	_	_			_		_
87.47.7																																									
		L		L	_	_	-	L	L	L	L	L	L		L		_		_	L	L	L		_	L		L								L	_	L	L	_		
	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	^	^	>	>	>	>	>	>	>	>	>	>
W 1 76 W	כ	Þ	Þ	ב)	٦	ם	>	n	5	>	٦	n	٦	n	ח	٦	D	٦	٦	2	7	Э	þ	O	5	כ	n	n	ŋ	n	n	P	⊃	Þ	5	D	D	ລ	U	D
11533	34	34	0.1	33	32	34	35	35	34	34	33	34	36	34	33	33	33	34	34	37	33	33	34	34	0.1	16	16	17	18	17	17	17	17	17	18	17	17	17	17	17	17
ANALYTE	4,4'-DDE	4,4'-DDE	4,4'-DDE	4,4'-DDT	ALDRIN																																				
18 (4:	TRG																																								
300000	DUP	REAL	RNS	REAL	DUP	REAL	RNS	REAL																																	
SAMPLEA	SS00103EG	SS00125EG	SS00124EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00125EG	SS00124EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG
LOCATION	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894

B-54

2	1					-																																			_
	1	1	1	1																																					
X >	>	\ -	> :	>	>	>	^	>	^	>	>	^	^	^	^	^	^	^	^	>	>	^	^	^	>	^	^	۸	>	>	>	>	^	^	>	^	^	۸	^	^	>
3 -) =	0 =	-	5	٥)	n	ר	ח	Ω	כ)	n	n	כ	ח	າ	Λ	n	n	n	n	n	n	n	ח	n	n	-	b	כ	D	ว	ר	n	n	n	n	ב	כ	J
100	17	1	/1	17	0.05	17	160	160	170	180	170	170	170	170	170	180	170	170	170	170	170	170	180	170	170	170	0.5	170	160	160	170	180	170	170	170	170	170	180	170	170	170
ENGL CTE							1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1016	1221	-1221	-1221	-1221	-1221	1221	.1221	1221	-1221	-1221	.1221	-1221	-1221
NIGOIA	ALCONIA	ALUMIN	ALDRIN	ALDRIN	ALDRIN	ALDRIN	AROCLOR-1016	AROCLOR-101	AROCLOR-1016	AROCLOR-1221																															
Jaz	201	JHG.	5H-	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG
CCCORE	DEAL	REAL PITAL	KEAL	ana	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	RNS	REAL													
SS00121EG	SS00121EG	5500122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG
CCATION	55107084	55107094	5510/194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594

PESTICIDES AND PCBs:RAW DATA

302	_	Τ-	_	1 -	_			_	т-	Г		_		1	_	_	_	_	Υ	_	_		r—		_		_	_	_					_	_	_	r –		_	_	_
18.00																																i									
																					L																				
	^	>	>	^	^	>	>	>	^	>	>	>	>	>	>	>	>	 -	>	>	>	 		- >	>	>	 >	>	^	^	^	^	^	^	>	_ ^	^	^	>	>	_
	ר	ר	D	n	n	ח	ר	n	n	n	ם	n	n	_ 	_ _	ם	2	-	7	2	_ _	n	ח) (ך	ח	 - 2	ם	n	n	n	ח	n	n	n	n	n	n	-	n	n
11.55.13	170	170	170	180	170	170	170	0.5	170	160	160	170	180	170	170	170	170	170	180	170	170	170	170	170	170	180	170	170	170	0.5	170	160	160	170	180	170	170	170	170	170	180
TI ATTACK																																									
77	AROCLOR-1221	AROCLOR-1232	AROCLOR-1242																																						
																	Г	Г		Γ																					
	TRG																																								
Occope	REAL	REAL	REAL	REAL	REAL	REAL	DUP	RNS	REAL	DUP	RNS	REAL																													
	18EG	19EG	20EG	21EG	22EG	23EG	03EG	24EG	25EG	OSEG	OGEG	07EG	08EG	09EG	10EG	11EG	12EG	13EG	14EG	1 5EG	16EG	17EG	18EG	19EG	20EG	21EG	22EG	23EG	03EG	24EG	25EG	05EG	06EG	07EG	08EG	09EG	10EG	11EG	12EG	13EG	14EG
5 S S S S S	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	\$5001	SS00112EG	SS00113EG	SS00114EG
COCATRON	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294

8.58

16.62 × 18.00																																									
13.38 MW.77.	^	^	<u> </u>	۸	۸ ا	^	>	^	>	^	۸	^	۸	^	\ \ \	^	>	>	 >	>	>	>	>	^	-	>	۸	۸ ا	^	^	^	۸	۸	^	۸	۸	۸	^	۸	^	^
	n	n	_ >	n	n	n	_	ח)	n	n	ח	n	n	כ	ם	n	2	7)	>	Þ	_ _	n)]) D	n	n	n	n	n	n	n	ר	n	n	n	n	n	n	ŋ
***	170	170	170	170	170	170	180	170	170	170	0.5	170	160	160	170	180	170	170	170	170	170	180	170	170	170	170	170	170	180	170	170	170	0.5	170	330	320	340	350	350	340	340
N. N. S. L.	17	1.		1.	1.	17	18	1,	11	11	0	17	16	16	11	18	11	-	12	-	11	180	11	11	-	17	17	17	18	17	17	1.	0	17	33	37	31	36	36	31	3,
MAINTE	AROCLOR-1242	AROCLOR-1248	AROCLOR-1254																																						
11.1	TRG AR	TRG AR	TRG AR	TRG AP	TRG AR	TRG	TRG AR	TRG	TRG	TRG AR		Ť			TRG AR	TRG AR		TRG AR	TRG AR	Ť	TRG AR																				
Occobe	REAL	PUP	RNS	REAL	DUP	RNS	REAL																																		
3312188	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG
LOCATION	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994

PESTICIDES AND PCBs:RAW DATA

2000		_	,	_	_	_	_	_	_	,	_	,					_																								
7.57.7.8																																						SUR	SUR	SUR	SUR
		L	L	L	L	_	L	_			L		L	_	_	L			L																						_
	>	^	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	^	>	>	>	^	^	>	>	>	>	>	>	>	>	Z	Z	7	7
	כ	n	D	2	5	Þ	2	2	ס	D	כ	Þ	ח	n	n	כ	٥	ם	ם	ר	n	n	n	n	n	n	n	ñ	n	ñ	n	n	n	n	n	n	U				
1000	330	340	360	340	330	330	330	340	340	370	330	330	340	1	340	330	320	340	350	350	340	340	330	340	360	340	330	330	330	340	340	370	330	330	340	1	340	92	95	98	66
AMALYTE	AROCLOR-1254	AROCLOR-1260	DI-BUTYLCHLORENDATE	DI-BUTYLCHLORENDATE	DI-BUTYLCHLORENDATE	DI-BUTYLCHLORENDATE																																			
	TRG	TRG	TRG	TRG																																					
100000	REAL	DUP	RNS	REAL	DOP	RNS	REAL	REAL	REAL	REAL	REAL																														
	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG
LOCALICAL	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694

B-58

***	_	,	1	,	_	J	,		I							_	ı -				_	_												,						
	9 10	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR	SUR																			
	-														52						52																			
	ļ	<u> </u>	-				-										L	_																						
^	1	1	Z	7	7	Z	Z	Z	7	Z	Z	7	Z	٨	Z	٨	7	Z	λ	λ	Z	^	^	^	^	>	>	^	>	>	^	^	>	۸ _	^	^	^	^	۸	^
																						n	n	n	n	n	כ	ר	כ	D	כ	ח	n	Λ	n	D	D	D	ົກ	n
101	20,	87	91	91	98	97	75	86	87	40	88	93	94	91	91	06	88	61	84	82	81	33	32	34	35	35	34	34	33	34	36	34	33	33	33	34	34	37	33	33
DI DI ITVI CUI DOCNIDATE	DI BLITZI CUI OBENDATE	DI-BUTYI CHI ORENDATE	DI-BUTYLCHLORENDATE	DIELDRIN																																				
ā	2		DI-BI	<u>DI-BI</u>	8-10	01-8	<u>0</u> -8	101-80	0-8	DI-BI	18-10	18-IO	DI-BI	18-IQ	18-10	18-10	18-10	19-IO	19-10	DI-BI)B-IO	DIEL																		
TEC	Sat	183	TRG	ЯX	TRG	Ϋ́Ε	TRG	TRG	ΧË	Α̈́	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG										
BEVI	PEAI	RFAI	REAL	and	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL													
SERVICE STATE OF STAT	SSOOTOFF	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00123EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00125EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG
SCIONTON	SC105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107194	SS107194	SS107294	SS107294	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194

PESTICIDES AND PCBs:RAW DATA

	1																																				7				٦
	-	_																													_										4
	1	4																														-						-			\dashv
	7	>	>	>	^	>	^	>	>	>	>	>	>	>	>	^	^	۸	^	>	>	^	>	>	>	^	^	>	>	>	>	>	>	^	^	>	>	>	^	>	>
17(19)	ם	D	D	ם	n	n	n	n	D	ח	n	D	ח	n	n	D	n	n	n	D	n	n	n	n	n	n	n	n	D	-	3))	n	n	n	n	D	ח	n	>)
HEBUS I	34	0.1	34	16	16	17	18	17	17	17	17	17	18	17	17	17	17	17	17	18	17	17	17	0.05	17	33	32	34	35	35	34	34	33	34	36	34	33	33	33	34	34
21																																									
ARAIYTE	DIELDRIN	DIELDRIN	DIELDRIN	ENDOSULFAN I	ENDOSULFAN I	ENDOSULFAN I	ENDOSULFAN II	ENDOSULFAN II	ENDOSULFAN II	ENDOSULFAN II																															
1775	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG
BOCOOR	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL
CHARLES	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG
LOCATION	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894

2364																																									
																		_																							
	۸	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	^	۸	۸	>	^	>	>	>	>	>	>
GUAL	J	5	5	>	_	b	 -))			>		5)	2	כ)	Э)	2		þ	 >	ח	n	n	n	n	n	U	n))	כ	ח	כ	D
HESTER	37	33	33	34	0.1	34	33	32	34	35	35	34	34	33	34	36	34	33	33	33	34	34	37	33	33	34	0.1	34	33	32	34	35	35	34	34	33	34	36	34	33	33
AMALITE	ENDOSULFAN II	ENDOSULFAN SULFATE	ENDRIN																																						
18/6:	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG																											
100000	REAL	REAL	REAL	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL
SAMPLES	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG
NOT KOO	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594

PESTICIDES AND PCBs:RAW DATA

**	Т	Т	7	_			Γ	T	_	_	_	Г	_		r	ı	_	_	_	_	T		_	_		_	_		,		,		,		<u> </u>	_			_	_	
		1																																							
	\downarrow	\downarrow	4	\dashv	_		L		L	88	88	89	89	89	88	89	89	89	89	89	89	89	88	89	88	88	88	89	88	83	88									Ц	_
****		<u>}</u>	>	>	>	>	>	>	>	7	7	Z	Z	Z	Z	Z	Z	7	Z	Z	7	Z	7	2	Z	7	7	Z	Z	7	Z	>	>	۸	۸	۸	^	^	^	Λ	>
-) -	0	n	ם	ח	n	J	ח																							D	n	n	n	n	n	n	n	Ω	D
22	25	34	34	37	33	33	34	0.1	34																							33	32	34	35	35	34	34	33	34	36
ENDBIN 32	LANDBA	LINDUIN LINDUIN	ENDRIN	ENDRIN ALDEHYDE	ENDRIN KETONE																																				
Jar	201		2	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG																											
PEVI	BEAL	100	REAL	REAL	REAL	REAL	dna	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL									
SS00118EG	SSOOTIBES	020011300	3200120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00125EG	SS00124EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG
55106694	25106794	100000	33100834	55106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294

PESTICIDES AND PCBs:RAW DATA

////	_	_	Т	Г	Г	Г	Г	Т	T	T	Т	T -	_	F	Ι-	,	_	_	_	T		_	_	_	_	,	Γ.	Γ	_	Г			_	_	<u> </u>	1	_	1	1	1	
																												_													
		_			L	-	L							_	_															_					L			_	_		
	۸			^	^	^	^				>	>	>	>		>	>		>	>	>	^	^	^	^	^	^	^	^	^	۸	^	^	^	^	^	^	^	>	^	>
	N	⊃	7)	Þ	ר	Þ)	9	>	>	5	5	5	>	b)	>	5	5	ח	ח	n	c	ח	n	ח	n	D	ח	n	ח	D	ם	J	ם	ר	Þ	ם	n	D
	34	33	33	33	34	34	37	33	33	34	0.1	34	16	16	17	18	17	17	17	17	17	18	17	17	17	17	17	17	18	17	17	17	0.05	17	16	16	17	18	17	17	17
AMALYTE	ENDRIN KETONE	HEPTACHLOR EPOXIDE																																							
												Γ															П														٦
77	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG											
2000	REAL	ana	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL								
States	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG
CONTRA	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994

PESTICIDES AND PCBs:RAW DATA

000	3	_	T .	1		T .	_	_			_	_				, .					_																				
2344.1																																									
63				L																																					
	_	\vdash		L	_			<u> </u>			_		-	-	_	-	_	-	_												_	_	L	_							
	>	^	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	^	^	^	^	^	>	>	>	۸	۸	>	>	^	^	>	>	^	>	^	>	^	۸
0.03	כ	n	>	D	כ	>	>	2	n	כ	J	٦	ם	כ	D	n	n	ח	כ	n	n	n	n	n	n	n	n	n	n	n	Ω	n	n	ב	ם	ח	n	n	n	U	U
HELLE	17	17	18	17	17	17	17	17	17	18	17	17	17	17	0.05	160	160	170	180	170	170	170	170	170	180	170	170	170	170	170	170	180	170	170	170	170	0.5	330	320	340	350
MALYTE	I EPOXIDE	I EPOXIDE	I EPOXIDE	I EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	EPOXIDE	LOR	LOR	LOR	LOR	LOR	OR	OR	OR	_OR	OR	OR	OR	OR	OR.	OR	OR	OR	OR	-OR	-08	-OR	-or				
	HEPTACHLOR EPOXIDE	HEPTACHLOR EPOXIDE	HEPTACHLOR	HEPTACHLOR EPOXIDE	METHOXYCHLOR	TOXAPHENE	TOXAPHENE	TOXAPHENE	TOXAPHENE																																
8 (4 :	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG
300000	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	ana	REAL	RNS	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL																		
SASPIES	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00125EG	SS00124EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00125EG	SS00124EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG
LOCATION	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694

PESTICIDES AND PCBs:RAW DATA

T. M. C.																																									
														_																											
	۸	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	۸	>	>	>	>	>	>	>	>	۸	^	>	>	>	>	>	>	>	>	^	>
SUAL	n	ם	Þ)	5))	5	5	>)	2	2)	5)	n))	Ŋ	n)	5	5))	5	n	U	n	Э	٦	٥))	Э	D	Þ	n	D
PEGER T	320	340	340	330	340	360	340	330	330	330	340	340	370	330	330	340	340	-	16	16	17	18	17	17	17	17	11	18	17	17	17	17	17	17	18	17	11	17	0.05	17	160
ANALYTE	TOXAPHENE	alpha-BHC	aipha-BHC	alpha-BHC	alpha-CHLORDANE																																				
TYPE	TRG																																								
accope	REAL	DUP	REAL	RNS	REAL	DUP	RNS	REAL	REAL																																
SARPLES	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00125EG	SS00124EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG
LOCATION	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394

PESTICIDES AND PCBs:RAW DATA

	Γ	Τ	Т	Π	Γ	Γ	Т	Т	Γ	Т	1	Т	T	Γ	Γ	Г	Τ	Τ	Т	Т	T	Т	Г	Т	Т	Т	T	Τ	Г	Т	Τ-	Т	1	T	Г	Τ	Ι-	T	Γ	T	<u> </u>
7.7.7																																									
	^	>	>	>	>	>	>	-	>	>	>	>	>	 >	-	>	>	 >	-	>	-	 >	 -	-	>	>	 >	 >	>	>	>	-	-	-	-	-	>	>	>		^
1110	כ	_	5	>	>	_		>	-	 -)	-	-	ך	_	-)	-	-		2	>	n	-	_)	>) >) >		-	-	-	-	-	 -	_ >	-	ם	n))
/////////////////////////////////////	160	0	0.00	0	0	0	0	0	2		0	0	0	0	0	0	0		0	2	0		9								_			_							
	16	170	180	170	170	170	170	170	180	170	170	170	170	170	170	180	170	170	170	0.5	170	16	16	17	18	17	1,	17	17	17	18	17	17	17	17	17	17	18	17	17	[]
27.43.832	ORDANE	DRDANE	ORDANE	ORDANE	DRDANE	ORDANE	ORDANE	ORDANE	DRDANE	DRDANE	ORDANE	DRDANE	ORDANE																												
	alpha-CHLORDANE	beta-BHC																																							
1111	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG																				
OCCODE	REAL	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP																	
			-				1	1		-				_			4	F			_		-	u.		_				<u>.</u>	-		H		E.		-	Œ			
	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG
2	SS	SS(SS	SS(SS	SS	SS()SS	SS	SS(SS(SS	SS(SS(SS	SS(SS	SS(SSC	SSC	SSC																				
COCATION	SS105494	SS105594	105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294
Ē	SS	SS1	SS	SS1	SS1	SS	SS1																																		

B.68

				_				_		,			_	_	_														_							_					
TYPEZ																																									
	4		L		L	L	L	L		L			L	L		_	L	L	_					_		_			_	Ц			L	_	L			_	_		Ц
	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	^	>	۸	>	>	>	^	^	^	>	>	>	>	^	۸	^	>	>	>
	0	-	5	>	5	>	þ	٦	ס	Þ))	5	7)	5)	כ	Þ	Þ	a	D	ר	D	ņ	n	D	D	n	D	n	D	Э	ם	כ	ר	n	כ) 	n	Э
	0.05	17	16	16	17	18	17	17	17	11	17	18	17	17	17	17	17	17	18	17	17	17	0.05	17	16	16	17	18	17	17	17	17	17	18	17	17	17	11	17	17	18
AND TE																									gamma-BHC (LINDANE)																
	Deta-BHC	beta-BHC	delta-BHC	gamma-BH	H8-ewweb	HB-ewweb	gamma-BH	HB-ewweb	gamma-BH	gamma-BH	gamma-BH																														
1111	- KG	TRG																																							
300000	KNS	REAL	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL																			
OTA CAROLO	SSU0124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG
CCLOTAGE	55101294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994

PESTICIDES AND PCBs:RAW DATA

100 March 100 Ma																											
																	_										
	-	╀	\vdash	┞	┞	\vdash	\vdash	L	-	┞	L	L	-	L	-	L	-	-		L	L	_	_	L	-	_	
	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
	Þ))	5	5	9	ס	D))))		5		5	5		Þ	5	5	5	כ	>	5)	D
	17	17	11	0.05	17	160	160	170	180	170	170	170	170	170	180	170	170	170	170	170	170	180	170	170	170	170	9.0
ANALYTE	gamma-BHC (LINDANE)	gamma-CHLORDANE																									
	TRG		TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG
100000	REAL	REAL	DUP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	ana	REAL	RNS
20.000	SS00122EG	SS00123EG	SS00103EG	SS00124EG	SS00125EG	SS00105EG	SS00106EG	SS00107EG	SS00108EG	SS00109EG	SS00110EG	SS00111EG	SS00112EG	SS00113EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00118EG	SS00119EG	SS00120EG	SS00121EG	SS00122EG	SS00123EG	SS00103EG	SS00125EG	SS00124EG
100781870	SS107094	SS107194	SS107294	SS107294	SS107294	SS105394	SS105494	SS105594	SS105694	SS105794	SS105894	SS105994	SS106094	SS106194	SS106294	SS106394	SS106494	SS106594	SS106694	SS106794	SS106894	SS106994	SS107094	SS107194	SS107294	SS107294	SS107294

INORGANICS

This section includes the raw data spreadsheets for inorganic chemicals. They are organized as indicated in the introduction of Appendix B, except the Type2 column was eliminated and sampling date (Sampdate) and analysis date (Analdate) columns were added.

21 NO. WITH 90	consideration of the policy of the properties of the policy of the polic	The state of the s	White the state of				Munched M. Linking Michies Mains Marine		St. Sharkshark	Minimum
	15-JUN-94 RNS	TRG ALUMINUM	11	11	U	Λ	Н	5.5	NG/L	200
ו≍ו	23-JUN-94 REAL	TRG ALUMINUM	4050			^	Н	4050	MG/KG	40
5	23-JUN-94 REAL	TRG ALUMINUM	6450			^	H	6450	MG/KG	40
23-JUN-94		TRG ALUMINUM	7070			>		7070	MG/KG	40
23-JUN-94	4	-4	7340	1		>	1	7340	MG/KG	40
23-JUN-94	+	7	7410	1		> :	+	7410	MG/KG	40
23-JUN-94	04 REAL	TPG ALUMINUM	0///	T		> >	\dagger	0///	MG/KG	\$ \$
23-JUN-94	_	+	8480	T		-	+	8480	MG/KG	9
23-JUN-94		H	9020			>		9020	MG/KG	9
23-JUN-94	94 REAL	DUP ALUMINUM	9136.4058			2	\vdash	9136.4058	MG/KG	40
23-JUN-94	-	_	10300			^	\dashv	10300	MG/KG	40
23-JUN-94	94 REAL	TRG ALUMINUM	10400			^		10400	MG/KG	40
23-JUN-94	94 REAL	TRG ALUMINUM	10700			Λ		10700	MG/KG	40
23-JUN-94	94 REAL	TRG ALUMINUM	10700			۸		10700	MG/KG	40
23-JUN-94	-	TRG ALUMINUM	10800			Λ		10800	MG/KG	40
23-JUN-94	4 REAL	TRG ALUMINUM	12700			Λ		12700	MG/KG	40
23-JUN-94		TRG ALUMINUM	13100			۸	\dashv	13100	MG/KG	40
23-JUN-94	4 REAL	TRG ALUMINUM	13400			Λ		13400	MG/KG	40
23-JUN-94		DUP ALUMINUM	13512.2383			2		13512.2383	MG/KG	40
23-JUN-94	REAL	TRG ALUMINUM	13900			Λ		13900	MG/KG	40
23-JUN-94	REAL	TRG ALUMINUM	15000			>		15000	MG/KG	40
23-JUN-94	\dashv	-	16100			>	\dashv	16100	MG/KG	9
23-JUN-94	4 REAL	TRG ALUMINUM	17100			>	\dashv	17100	MG/KG	\$
20-JUN-94	+	\dashv	0.38	8	Z	ΙV	12	0.19	MG/KG	12
27-JUN-94	+	7	0.4075	\$ 2	P	7	\dashv	0.20375	MG/KG	12
27-JUN-94	+	-	0.41	14.	Z S	4	2	0.205	MG/KG	12
20-JUN-94	+	+	0.41	4.	ם	4	7	0.205	MG/KG	12
20-JUN-94	$\frac{1}{1}$	1	0.41	₹.	z	4	12	0.205	MG/KG	12
20-JUN-94	+	+	0.41	¥.	ž:	≰:	727	0.205	MG/KG	12
20-10IN-94	+	+	0.42	7	1	 	+	0.21	MG/AG	
NOT NO	+	+	0.43	;	3	<u> </u>	1	0.21	MUND	7 5
	$\frac{1}{1}$	+	0.44	\$	3	₹	+	0.22	MG/KG	7
20-JUN-94	+	-†	0.47	.47		Y Y	7	0.235	MG/KG	12
20-JUN-94	+	7	0.47	14.	7	4	7	0.235	MG/KG	12
20-JUN-94	-94 REAL	TRG ANTIMONY	0.56	.56	D	ΙV	7	0.28	MG/KG	12
Ž	20-JUN-94 REAL	TRG ANTIMONY	0.58	.58	n	JA	7	0.29	MG/KG	12
Ū	20-JUN-94 REAL	TRG ANTIMONY	0.58	.58	n	JA	7	0.29	MG/KG	12
톍	20-JUN-94 REAL	TRG ANTIMONY	89.0	89.	U	JA	7	0.34	MG/KG	12
ΞI	20-JUN-94 REAL	TRG ANTIMONY	0.69	69.	n	ΙV	7	0.345	MG/KG	12
20-JUN-94										

INORGANICS: RAW DATA

	_	_	τ	_	T -		_	_	_	т-	_	_	т-	т-		T		_	_	т—	,	7	,	_	-			r—								_	_	_	_	_	
S R R S	12	12	12	12	12	12	8	2	2	2	2	7	2	7	7	2	7	7	7	7	7	2	7	2	7	2	2	2	2	2	2	200	9	9	9	40	9	9	9	용	₽
SERVE	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	NG/L	NG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG																
	0.35	0.355	0.38	0.455	0.47	0.6255	1	0.5	2.3	3.3	3.9	4.4	4.8	4.9	5	5.3	5.8	5.8	5.806	9	6.1	6.2	6.3	6.4548	6.8	7.4	8.3	8.4	8.7	9.2	9.6	0.5	45.7	76.3	79.6	88.1561	90.9	94.6	95.4	97.2	99.7239
	Ī		Ц						L		L		L																												
***	7	7	7	7	7		L		L	L	L		L	L						L	L			Ц						_				L					Ц	Ц	Ц
	JA	JA	JA	JA	Ϋ́	7	^	۸	>	>	>	>	Λ	<u>^</u>	^	^	^	^	Z	^	>	۸	>	Z	۸	Λ	>	^	>	>	>	>	^	۸	Λ	2	>	^	>	>	2
	U	U	U	Ω	Э	В	U	ΜΩ																								Ω									
	L.	.71	.76	16:	8.		2	1																								1									
	0.7	0.71	0.76	0.91	0.94	0.6255	2	1	2.3	3.3	3.9	4.4	4.8	4.9	5	5.3	5.8	5.8	5.806	9	6.1	6.2	6.3	6.4548	6.8	7.4	8.3	8.4	8.7	9.2	9.6	1	45.7	76.3	79.6	88.1561	6.06	94.6	95.4	97.2	99.7239
ANALYTE	ANTIMONY	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	ARSENIC	BARIUM	BARIUM	BARIUM	BARIUM	BARIUM	BARIUM	BARIUM	BARIUM	BARIUM	BARIUM																							
7.8	EG EG	TRG	TRG	TRG	TRG	DUP	TRG	IRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	TRG	DGP	TRG	TRG	TRG	IRG	1 <u>1</u> 2	TRG	TRG	TRG	TRG	\neg	TRG	DUP	TRG	TRG		\rightarrow	DUP							
	1	1	1	7	7	1	1	RNS		REAL	REAL .		REAL	1	\dashv	\dashv	\dashv	\dashv	REAL		REAL		1	\dashv	1	1	\dashv	1	\dashv	1	+		┪	-	1	1		1	1		REAL I
	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	17-JUN-94	20-JUN-94	27-JUN-94	20-JUN-94	20-JUN-94	27-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94												
1000000	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94
8888	SS00120EG	SS00108EG	SS00121EG	SS00103EG	SS00111EG	SS00123EG	SS00124EG	SS00124EG	SS00106EG	SS00105EG	SS00114EG	SS00108EG	SS00109EG	SS00121EG	SS00122EG	SS00107EG	SS00113EG	SS00110EG	SS00123EG	SS00118EG	SS00125EG	SS00123EG	SS00119EG	SS00125EG	SS00103EG	SS00112EG	SS00111EG	SS00116EG	SS00117EG	SS00115EG	SS00120EG	SS00124EG	SS00106EG	SS00122EG	SS00109EG	SS00123EG	SS00123EG	SS00108EG	SS00110EG	SS00125EG	SS00125EG
	2	2	Ď	<u> </u>	2	2	Ξ	E	ā	22	D8	8	٨3	Z	D\$	72	73	44	2	7	Ы	3	F	E	E	8	VS	Z	2	P4	12	ы	ī	22	X 3	2	2	ã	44	E	ы
273	SS106894	SS105694	SS106994	SS107294	SS105994	SS107194	SS107294	SS107294	SS105494	SS105394	SS106294	SS105694	SS105794	SS106994	SS107094	SS105594	SS106194	SS105894	SS107194	SS106694	SS107294	SS107194	SS106794	SS107294	SS107294	SS106094	SS105994	SS106494	SS106594	SS106394	SS106894	SS107294	SS105494	SS107094	SS105794	SS107194	SS107194	SS105694	SS105894	SS107294	SS107294

33100/34 FI				72 11111 00	14.00		The street of		_		4.5	ſ	***	0.000	ç
17	╁	SS00116FG	07-IUN-94	23-IIIN-94	RFAL	TRG	BARITIM	105			• >	+	102	MG/KG	≩ ≨
1	╁╴	17EG	07-JUN-94	23-JUN-94	REAL	TRG	BARIUM	105		T	>	+	105	MG/KG	4
	Н	SS00103EG	08-JUN-94	23-JUN-94	DUP	TRG	BARIUM	106			>	-	100	MG/KG	\$
	V6 SS001	SS00112EG	08-JUN-94	23-JUN-94	REAL	TRG	BARIUM	107			>		107	MG/KG	5
^	V2 SS001	SS00107EG	07-JUN-94	23-JUN-94	REAL	TRG	BARIUM	107			Λ		107	MG/KG	40
D	D2 SS001	SS00105EG	07-JUN-94	23-JUN-94	REAL	TRG	BARIUM	108			Λ		108	MG/KG	9
	D4 SS001	SS00121EG	08-JUN-94	23-JUN-94	REAL	TRG	BARIUM	109			Λ		109	MG/KG	40
^	V5 SS00111EG	11EG	08-JUN-94	23-JUN-94	REAL	TRG	BARIUM	111			Λ		111	MG/KG	40
	P4 SS00115EG	1SEG	07-JUN-94	23-JUN-94	REAL	TRG	BARIUM	114			>		114	MG/KG	5
^	V1 SS00118EG	18EG	07-JUN-94	23-JUN-94	REAL	TRG	BARIUM	118			Λ	L	118	MG/KG	9
D	D6 SS00114EG	14EG	08-JUN-94	23-JUN-94	REAL	TRG	BARIUM	118			Λ		118	MG/KG	9
^	V7 SS00113EG	13EG	08-JUN-94	23-JUN-94	REAL	TRG	BARIUM	128			Λ		128	MG/KG	40
P	P2 SS00120EG	20EG	07-JUN-94	23-JUN-94	REAL	TRG	BARIUM	134			۸		134	MG/KG	5
D	D1 SS001	SS00106EG	07-JUN-94	\$6-NN1-62	REAL	TRG	BERYLLIUM	0.24		В	Λ		0.24	MG/KG	-
D	D2 SS00105EG	05EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.45		m	>	_	0.45	MG/KG	-
P	P7 SS00124EG	24EG	08-JUN-94	15-JUN-94	RNS	TRG	BERYLLIUM	1	-	ם	Λ		0.5	NG/L	5
^	V1 SS00118EG	18EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.52		æ	۸	_	0.52	MG/KG	-
^	V3 SS00109EG	09EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.53		В	Λ		0.53	MG/KG	1
D	D5 SS00122EG	22EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.54		В	۸		0.54	MG/KG	1
_	V4 SS00110EG	10EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.59		В	Λ		0.59	MG/KG	1
	┥	SS00117EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.63		B	>		0.63	MG/KG	-
	P6 SS00123EG	23EG	08-JUN-94	23-JUN-94	REAL	DUP	BERYLLIUM	0.6545		В	Z		0.6545	MG/KG	-
7	┪	12EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	99.0		B	Λ		99.0	MG/KG	-
	┥	15EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.67		В	Λ		0.67	MG/KG	1
-	┥	16EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.68		В	Λ		0.68	MG/KG	1
	D3 SS00108EG	08EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.69		В	Λ		0.69	MG/KG	1
SS107194 P	P6 SS00123EG	23EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.7		В	Λ		0.7	MG/KG	1
-	┥	SS00120EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.72		В	Λ		0.72	MG/KG	1
4	┥	14EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.72		В	^		0.72	MG/KG	-
┥	\dashv	21EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.75		В	^		0.75	MG/KG	-
4	ᅱ	19EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.77		В	>	-	0.77	MG/KG	-
\dashv	ᅥ	07EG	07-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.77		В	^		0.77	MG/KG	-
SS107294 P	P7 SS00125EG	25EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.81		В	Λ		0.81	MG/KG	1
SS107294 P	P7 SS00125EG	25EG	08-JUN-94	23-JUN-94	REAL	DUP	BERYLLIUM	0.8211		В	Z		0.8211	MG/KG	-
SS106194 V	\dashv	13EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.86		В	Λ		0.86	MG/KG	1
	P7 SS001	SS00103EG	08-JUN-94	23-JUN-94	DUP	TRG	BERYLLIUM	0.87		8	Λ		0.87	MG/KG	1
^	V5 SS00111EG	11EG	08-JUN-94	23-JUN-94	REAL	TRG	BERYLLIUM	0.0		В	Λ		6.0	MG/KG	1
	D1 SS00106EG	06EG	07-JUN-94	26-JUN-94	REAL	TRG	CADMIUM	0.59	.59	U	Λ		0.295	MG/KG	1
D	D2 SS00105EG	0SEG	07-JUN-94	26-JUN-94	REAL	TRG	CADMIUM	0.59	.59	U	۸		0.295	MG/KG	1

INORGANICS: RAW DATA

INORGANICS: RAW DATA

788	-	_	_				_	r -	ĭ	_		·				T			,			_																	, ,		_
	-	-	-	-		1	-	1	-	-	-	-	-	1	-	1	-	-	1	5	-	2000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
SURVEY	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UG/L	MG/KG	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
	0.30565	0.31	0.3107	0.315	0.325	0.335	19.0	99.0	0.71	0.71	0.71	0.73	0.73	0.77	0.84	0.85	86.0	1	1	1.5	2.3	10.7	1450	2120	2130	2350	2440	2610	2630	2678.7999	2680	2810	2870	2879.2245	2900	2940	2970	2980	3030		3590
	1	_	1																			7																			\rfloor
	2	>	<u>z</u> :	>	>	^	Λ	>	>	>	>	۸	۸	Λ	^	^	Λ	^	>	Λ	۸	JA	Λ	Λ	Λ	^	>	^	Λ	Z	>	>	^	Z	^	Λ	Λ	Λ	>	>	>
]:			٦	Ω	В	В	В	B	m	В	В	В	В	В	В	В	В	ū		Û																			
	6113	7	-6214	S.	છ	.67			Г											3		21.4																			٦
# 3 5 18 N. (C.)	0.6113	0.62	0.6214	0.63	0.65	0.67	19.0	89.0	0.71	0.71	0.71	6.73	0.73	0.77	0.84	0.85	86.0	1	1	3	2.3	21.4	1450	2120	2130	2350	2440	2610	2630	2678.7999	2680	2810	2870	2879.2245	2900	2940	2970	2980	3030	3570	3590
2222	_	+	_	CADMIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM	CALCIUM																	
	JON I	IKC	and	IRG	TRG	TRG	TRG	DOP	TRG	TRG	TRG	DUP	TRG																												
1000000	KEAL	KEAL	KEAL	KEAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL							
ALVES TO S	Z3-JUN-94	20-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	15-JUN-94	26-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94
A PARTIE AND A PAR	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	94-JUN-94	46-NUI-70	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94								
2000	SS00125EG	SS00123EG	SS00123EG	SS00113EG	SS00114EG	SS00121EG	SS00111EG	SS00122EG	SS00109EG	SS00118EG	SS00103EG	SS00116EG	SS00110EG	SS00108EG	SS00117EG	SS00120EG	SS00119EG	SS00112EG	SS00115EG	SS00124EG	SS00107EG	SS00124EG	SS00106EG	SS00122EG	SS00118EG	SS00112EG	SS00116EG	SS00115EG	SS00117EG	SS00123EG	SS00123EG	SS00125EG	SS00105EG	SS00125EG	SS00110EG	SS00109EG	SS00121EG	SS00103EG	SS00120EG	SS00119EG	SS00107EG
	ΞĮ.	٤ ۽	٤!	>	2	D4	VS	DS	V3	V1	P7	P5	V4	D3	РЗ	P2	P1	9/	P4	P7	V2	P7	D1	D5	V1	9/	P 3	P4	23	3	3	ы	D2	M	٧4	V3	D4	P7	P2	Ы	72
973	55107294	5510/194	5510/194	55106194	SS106294	SS106994	SS105994	SS107094	SS105794	SS106694	SS107294	SS106494	SS105894	SS105694	SS106594	SS106894	SS106794	SS106094	SS106394	SS107294	SS105594	SS107294	SS105494	SS107094	SS106694	SS106094	SS106494	SS106394	SS106594	SS107194	SS107194	SS107294	SS105394	SS107294	SS105894	SS105794	SS106994	SS107294	SS106894	SS106794	SS105594

	وا	۾	0	8	0	0	0	0	٥	٥	0	C		o	0	0	ر ا	<u>-</u>	<u>_</u>	c	c	0	0	0	0	0	o	Q							П					٦	7
366	_	1000	1000	1000	300	3 200	200	200	L	200	200	200	200	200	200	200	200	200	L	200	200	200	200	200	200	200	200	1000	10	2	1 2	, 2	1 2		2	; 2	1 2	; 2	; 2	7	2
2000	MG/KG	UG/L	UGAL	MG/KG																																					
	3700	3770	4190	4550	6.05	6.3	6.3	6.35	6.4	6.4	6.4	6.41815	6.5	6.5	6.5	6.5	6.5247	6.55	6.55	6.65	6.65	6.65	6.65	6.7	6.75	6.95	L	31.5	1	5.5	7.5	7.5	8.7	6	9.5	10.5	10.7	10.7	11.1127	11.3	11.5
	4			Ц	∞		L				8		8	8	8	8	L		∞	∞	8		8	8		8	8	Ц	Ц						L					4	_
	>	^	^	Λ	JA	Λ	>	>	>	^	JA	Z	At	Υſ	Υſ	Υſ	2	>	≤	Ϋ́	JA	Λ	JA	JA	Λ	JA	JA	^	>	^	۸	۸	<u>^</u>	>	>	Λ	Λ	^	7	>	>
					Ω	Ω	n	n	Ω	Û	Ω	Ω	U	Ω	Ω	Ω	Ω	n	٦	n	Û	U	n	Ω	n	Ω	U	Û	Ω												
***					12.1	12.6	12.6	12.7	12.8	12.8	12.8	12.83	13	13	13	13	13.04	13.1	13.1	13.3	13.3	13.3	13.3	13.4	13.5	13.9	14	63	2												
	3700	3770	4190	4550	12.1	12.6	12.6	12.7	12.8	12.8	12.8	12.8363	13	13	13	13	13.0494	13.1	13.1	13.3	13.3	13.3	13.3	13.4	13.5	13.9	14	63	2	5.5	7.5	7.5	8.7	6	9.5	10.5	10.7	10.7	11.1127	11.3	11.5
	_	CALCIUM	CALCIUM	CALCIUM	CESIUM	_	CESIUM	CESIUM	CESIUM		CESIUM	CESIUM	CESIUM	CESIUM	CESIUM	CESIUM	CHROMIUM		CHROMIUM	CHROMIUM	CHROMIUM		CHROMIUM																		
	TRG	DUP	TRG	TRG	TRG	TRG	DUP	TRG	DUP	TRG	TRG																														
(00000	REAL	REAL.	REAL	DUP	REAL	RNS	RNS	REAL																																	
W. V.	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	25-JUN-94	17-JUN-94	15-JUN-94	23-JUN-94																																	
	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	98-1UN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	94-1UN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94
1 () () () () () () () () () (SS00108EG	SS00113EG	SS00111EG	SS00114EG	SS00106EG	SS00117EG	SS00120EG	SS00110EG	SS00116EG	SS00125EG	SS00105EG	SS00125EG	SS00112EG	SS00123EG	SS00122EG	SS00118EG	SS00123EG	SS00119EG	SS00103EG	SS00111EG	SS00107EG	SS00113EG	SS00115EG	SS00108EG	SS00109EG	SS00114EG	SS00121EG	SS00124EG	SS00124EG	SS00106EG	SS00109EG	SS00122EG	SS00105EG	SS00110EG	SS00118EG	SS00117EG	SS00108EG	SS00116EG	SS00123EG	SS00119EG	SS00121EG
	E A	5	٧5	D6	ā	2	72	٧4	P5	М	D2	P7	9/	P6	DS	V1	P6	Ы	P7	VS	V2	٧7	P4	D3	V3	D6	D4	P7	Ы	D1	٧3	DS	D2	٧4	V1	ВЗ	D3	PS	32	표	7
ALL STREET, ST	SS105694	SS106194	SS105994	SS106294	SS105494	SS106594	SS106894	SS105894	SS106494	SS107294	SS105394	SS107294	SS106094	SS107194	SS107094	SS106694	SS107194	SS106794	SS107294	SS105994	SS105594	SS106194	SS106394	SS105694	SS105794	SS106294	SS106994	SS107294	SS107294	SS105494	SS105794	SS107094	SS105394	SS105894	SS106694	SS106594	SS105694	SS106494	SS107194	SS106794	SS106994

INORGANICS: RAW DATA

<u>-</u>				_			_	-							_		_																								
1000	7	2	2	2	2	2	2	2	2	2	2	20	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	2	10	10	10	25	5	5	S	5	2
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
	11.9	12.1	12.1	13.3	13.5	13.7	14.1	14.2503	14.8	16.6	16.9	-	3.4	5.2	5.3	5.6	5.7	5.8	6.5	6.9	7.2	7.3	7.5	7.7	7.9	7.9	8.4	8.7	8.8	8.8902	6	9.4	9.4479	10.2	11.2	0.5	5.2	10.3	10.3	10.6	
	1																	-												1											٦
																																		6		8					
	>	>	>	Λ	^	^	>	7	>	>	>	>	>	Λ	Λ	^	Λ	Λ	Λ	>	^	>	>	>	>	>	>	>	>	7	>	>	Z	Ϋ́	>	Υ	>	^	>	>	>
												U	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B	В	В	В		U					
	1											2																								1					٦
PINCES	11.9	12.1	12.1	13.3	13.5	13.7	14.1	14.2503	14.8	16.6	16.9	2	3.4	5.2	5.3	5.6	5.7	5.8	6.5	6.9	7.2	7.3	7.5	7.7	7.9	7.9	8.4	8.7	8.8	8.8902	6	9.4	9.4479	10.2	11.2	1	5.2	10.3	10.3	10.6	11
2228	_	3 CHROMIUM	P CHROMIUM	3 CHROMIUM	_	3 CHROMIUM	3 COBALT	3 COBALT	COBALT	COBALT	GOBALT COBALT	GOBALT	COBALT	GOBALT COBALT	GOBALT	GOBALT COBALT		3 COBALT	GOBALT COBALT	3 COBALT	3 COBALT	GOBALT COBALT	3 COBALT	3 COBALT	P COBALT	_	_	P COBALT	3 COBALT	3 COBALT	3 COPPER	G COPPER									
	3	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	and	TRG	TRG	DUP	TRG							
	KEAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL							
THE STATE OF	Z3-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94							
EL YCLAYS.	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94
*******	SS00112EG	SS00115EG	SS00123EG	SS00125EG	SS00120EG	SS00114EG	SS00107EG	SS00125EG	SS00113EG	SS00103EG	SS00111EG	SS00124EG	SS00106EG	SS00109EG	SS00105EG	SS00117EG	SS00118EG	SS00116EG	SS00108EG	SS00120EG	SS00110EG	SS00115EG	SS00114EG	SS00122EG	SS00107EG	SS00119EG	SS00112EG	SS00113EG	SS00125EG	SS00123EG	SS00111EG	SS00123EG	SS00125EG	SS00103EG	SS00121EG	SS00124EG	SS00106EG	SS00109EG	SS00118EG	SS00105EG	SS00122EG
	\$	P4	P6	M	P2	D6	V2	М	7.7	Ы	75	М	DI	V3	D2	ы	N1	P5	D3	P2	V4	P4	D6	DS	V2	P1	V6	7.7	M	P6	٧5	ጅ	M	М	D4	P7	D1	V3	V1	D2	DS
ALLE MOLENO	55106094	SS106394	SS107194	SS107294	SS106894	SS106294	SS105594	SS107294	SS106194	SS107294	SS105994	SS107294	SS105494	SS105794	SS105394	SS106594	SS106694	SS106494	SS105694	SS106894	SS105894	SS106394	SS106294	SS107094	SS105594	SS106794	SS106094	SS106194	SS107294	SS107194	SS105994	SS107194	SS107294	SS107294	SS106994	SS107294	SS105494	SS105794	SS106694	SS105394	SS107094

B-76

*	5	5	5	2	~	S	S	8	2	8	5	5	5	5	5	5	5	2	100	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
TOTAL COLUMN	KG	KG	KG	KG	KG	KG	SS	93	KG	93	SS S	S	93	93	ξĠ	SG S	Ω	£G									Ц							Ш					Ц	Ц	Ц
	MG/KG	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG																							
	11.6	12.1	13.2	13.3	13.5	13.5	13.9	14.4	14.5	14.5263	15	15	15.2	15.3302	15.4	15.4	15.7	16	8.05	7390	9030	9100	9420	9830	10300	11547.4212	11700	11800	12200	12400	12600	12800	13100	13800	14800	14900	15300	15600	16000	16100	16308.0431
388	_					H				Н									<u></u>					_												Ц			Щ	Ц	Ц
*****	Λ	^	Λ	Λ	Λ .	^	Λ	^^^^^^	Λ	Z		۸ ا	_ ^	Z	·	^	_ ^	۸ ا	JA 7	Λ	۸	Λ	Λ	۸ ا	Λ	Z	^	Λ	^	^	^	Λ	^	Λ	Λ	Λ	Λ	^	^	\ \ \	Z
## ##	Н	_								H										Н					Н														Н	Н	H
***	Н																		1 U																				Н		
***								Н							_				16.1						Ц	2	Ц					-							Ц	Н	
	11.6	12.1	13.2	13.3	13.5	13.5	13.9	14.4	14.5	14.5263	15	15	15.2	15.3302	15.4	15.4	15.7	16	16.1	7390	9030	9100	9420	9830	10300	11547.4212	11700	11800	12200	12400	12600	12800	13100	13800	14800	14900	15300	15600	16000	16100	16308.0431
AVAINT.	COPPER	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON	IRON																								
***************************************	TRG	DUP	TRG	TRG	TRG	DUP	TRG	DUP	TRG	TRG	TRG	TRG		TRG	DUP																										
**************************************	REAL		REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL		REAL	REAL	REAL		REAL	1	REAL		REAL															
ALC LESS OF	23-JUN-94	15-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	23-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	23-JUN-94																							
STATE OF	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94
2000	SS00110EG	SS00117EG	SS00116EG	SS00108EG	SS00115EG	SS00121EG	SS00112EG	SS00114EG	SS00120EG	SS00123EG	SS00123EG	SS00119EG	SS00113EG	SS00125EG	SS00107EG	SS00111EG	SS00103EG	SS00125EG	SS00124EG	SS00106EG	SS00122EG	SS00118EG	SS00109EG	SS00110EG	SS00123EG	SS00123EG	SS00117EG	SS00114EG	SS00108EG	SS00116EG	SS00105EG	SS00119EG	SS00121EG	SS00115EG	SS00113EG	SS00111EG	SS00125EG	SS00107EG	SS00120EG	SS00112EG	SS00125EG
***	٧4	23	PS	D3	P4	D4	٧6	De	P2	3	32	P1	77	Ы	2	VS	М	М	Ы	DI	DS	۲۱ ۲۱	٧3	44	2	3	2	D8	D3	Æ	D2	ā	7	P4	۸2	٧5	ы	72	72	γ	Ы
	SS105894	SS106594	SS106494	SS105694	SS106394	SS106994	SS106094	SS106294	SS106894	SS107194	SS107194	SS106794	SS106194	SS107294	SS105594	SS105994	SS107294	SS107294	SS107294	SS105494	SS107094	SS106694	SS105794	SS105894	SS107194	SS107194	SS106594	SS106294	SS105694	SS106494	SS105394	SS106794	SS106994	SS106394	SS106194	SS105994	SS107294	SS105594	SS106894	SS106094	SS107294

INORGANICS: RAW DATA

INORGANICS: RAW DATA

9833	1	_	_	Γ-	_	_	Γ-	_	_	ι	·	_		_	_	_	_	_	_	1	<u> </u>	_	_	_	T	_	ι –		,		_	1	_	_	Γ	_	_			_	
	8	3	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	100	20	20	20	20	20	20	20	20	20	20	20	20	20	70	70
NA PIN	MG/KG	UGAL	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
		5	8.6			<u> </u>	 		-						H						r																				
	20X	0.5	90	21.2	25.1	25.2	26.8	26.8	28.4	29.6	30.1	31.2636	31.3	32.3	32.5262	32.7	36.9	36.9	39.2	40.8	41.3	41.4	44.4	50.9	53.3	1	4.8	5.2	5.4	5.6	5.7	6.4	6.5	6.9618	7.1	7.4	7.4	ĽL	7.8	8.2	8.6
	_	_																																							
	4	-						L	L	L			L						L			H	_			L														Ц	4
	^	>	^	Λ	^	Λ	Λ	Λ	Λ	Λ	^	Z	^	Λ	Z	Λ	^	<u> </u>	Λ	۸	۸	Λ	Λ	^	^	^	Λ	>	>	^	Λ	^	Λ	Z	Λ	Λ	Λ	^	^	>	^
		٥																								U	В	B	В	В	В	В	В	В	В	В	В	В	B	æ	B
		-																								2													П		
	20900	-	8.6	21.2	25.1	25.2	26.8	26.8	28.4	29.6	30.1	31.2636	31.3	32.3	32.5262	32.7	36.9	36.9	39.2	40.8	41.3	41.4	44.4	50.9	53.3	2	4.8	5.2	5.4	5.6	5.7	6.4	6.5	6.9618	7.1	7.4	7.4	7.7	7.8	8.2	8.6
100000	7	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LEAD	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM	LITHIUM
	2	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	DUP	TRG	TRG	TRG	DUP	TRG																					
(00)	DOP	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL										
ANALYS IN THE	26-JUN-94	16-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	27-JUN-94	27-JUN-94	20-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94												
18 75 15 15 15 15 15 15 15 15 15 15 15 15 15	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94
***	SSOOTOFFC	SS00124EG	SS00106EG	SS00105EG	SS00121EG	SS00113EG	SS00114EG	SS00109EG	SS00108EG	SS00122EG	SS00125EG	SS00125EG	SS00118EG	SS00103EG	SS00123EG	SS00123EG	SS00110EG	SS00119EG	SS00107EG	SS00112EG	SS00111EG	SS00116EG	SS00120EG	SS00117EG	SS00115EG	SS00124EG	SS00122EG	SS00109EG	SS00110EG	SS00106EG	SS00118EG	SS00117EG	SS00116EG	SS00123EG	SS00121EG	SS00119EG	SS00108EG	SS00123EG	SS00115EG	SS00112EG	SS00125EG
		Z	ā	D2	D4	٧7	D8	V 3	D3	DS	Ы	Ы	V1	Ы	P6	P6	٧4	P1	V2	9,	VS	P5	P2	Р3	P4	М	DS	λ3	٧4	ā	V 1	3	P5	P6	D4	Р1	D3	P6	P4	9,	Ы
ALL NOUNDER	22101294	SS107294	SS105494	SS105394	SS106994	SS106194	SS106294	SS105794	SS105694	SS107094	SS107294	SS107294	SS106694	SS107294	SS107194	SS107194	SS105894	SS106794	SS105594	SS106094	SS105994	SS106494	SS106894	SS106594	SS106394	SS107294	SS107094	SS105794	SS105894	SS105494	SS106694	SS106594	SS106494	SS107194	SS106994	SS106794	SS105694	SS107194	SS106394	SS106094	SS107294

INORGANICS: RAW DATA

			Γ	Γ	1	Γ	Γ	_	<u></u>	Ī_	_	Ī_	<u>_</u>	<u></u>	_	<u>_</u>	<u>-</u>	<u>_</u>	<u>-</u>	_				_	_	٦		_				_				Г			П	П	\neg
CERT	20	20	L	L.		L		ຂ	5000	1000	1000	丄	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	15	3	3	3	3	3	3	3	3
	MG/KG	NG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	NBVL	MG/KG	MG/KG													
	9.8	9.1	9.4439	9.5	10.3	10.3	10.7	11.6	6.5	1310	1360	1410	1420	1470	1480	1510	1630	1700	1734.4795	1840	1920	2040	2070	2140	2200	2235.4323	2320	2480	2490	2500	2560	2800	0.65	129	141	163	176	190	196	205	212
				L					L				L			L																									
# 22 M # 33	-	_	_	L	L	L	L			L		L				H	L			Н						H				Н			7			\vdash		Н			\dashv
	Λ	Λ	Z	^	Λ	<u> </u>	^	>	Λ	<u>^</u>	Λ	^	Λ	^	Λ	Λ	^	^	Z	<u> </u>	^	Λ	^ _	Λ	Λ	Z	Λ	Λ	Λ [Λ	^	Λ	JA	Λ	v	^	^	v	Λ	^	^
8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	В	В	В	В	В	В	В	A	n																								U								
					Ц				13																								1.3								
	8.6	9.1	9.4439	9.5	10.3	10.3	10.7	11.6	13	1310	1360	1410	1420	1470	1480	1510	1630	1700	1734.4795	1840	1920	2040	2070	2140	2200	2235.4323	2320	2480	2490	2500	2560	2800	1.3	. 129	141	163	176	190	196	205	212
ANN NAV	LITHIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MAGNESIUM	MANGANESE	MANGANESE														
27.8	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	\neg	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	_		TRG										
1000000	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	RNS	REAL	REAL						
A STATE OF THE STA	23-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94													
SAMPLANE	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94
E233	SS00107EG	SS00105EG	SS00125EG	SS00114EG	SS00120EG	SS00113EG	SS00103EG	SS00111EG	SS00124EG	SS00106EG	SS00122EG	SS00116EG	SS00118EG	SS00109EG	SS00117EG	SS00110EG	SS00115EG	SS00112EG	SS00123EG	SS00123EG	SS00121EG	SS00105EG	SS00119EG	SS00125EG	SS00120EG	SS00125EG	SS00108EG	SS00103EG	SS00107EG	SS00114EG	\$\$00111EG	SS00113EG	SS00124EG	SS00109EG	SS00106EG	SS00108EG	SS00114EG	SS00107EG	SS00119EG	\$\$00110EG	SS00118EG
	72	D2	Ы	<u>D</u>	22	77	ы	ζ.	ы	ā	22	E	ΙΛ	K 3	2	٧4	P4	%	3	2	74	D2	ā	A	72	Ы	ß	Ы	72	26	25	4	ы	٨3	īā	23	8	٧2	Ā	44	5
8000	SS105594	SS105394	SS107294	SS106294	SS106894	SS106194	SS107294	SS105994	SS107294	SS105494	SS107094	SS106494	SS106694	SS105794	SS106594	SS105894	SS106394	SS106094	SS107194	SS107194	SS106994	SS105394	SS106794	SS107294	SS106894	SS107294	SS105694	SS107294	SS105594	SS106294	SS105994	SS106194	SS107294	SS105794	SS105494	SS105694	SS106294	SS105594	SS106794	SS105894	SS106694

INORGANICS: RAW DATA

			_	ī	_	Γ-	T	Г	<u> </u>	_	ī	T	_	_	_	Ι		ı	_	_	_											_	_			Τ	_	_	_		
8 (1)	3	3	3	က	3	3	3	3	3	3	3	3	3	3	3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1	40	9
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	NGV	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG							
10 N N 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	214	228	229	231	27.1	273	277.8574	288	294	298	298.9353	302	313	330	357	0.04	0.04185	0.045	0.045	0.045	0.045	0.045	0.045	0.0456	0.05	0.05	0.05	0.055	0.055	0.055	0.09	0.1	0.1	0.1	0.11	0.11	0.11	0.12	0.12	0.29	0.32
8888 8873	\dashv	_									L	L	Ц								_										12	12	12		12	12	12	12	12		1
	_	^	Λ	Λ	Λ	Λ	Z	>	^	Λ	2	^	Λ	Λ	^	Λ	2	Λ	^	^	۸	^	^	2	^	>	>	^	^	>	JA	JA	JA	^	JA	JA	JA	JA	JA	^	JA
																NO	n	N D	N	NN	UN	N	N	Û	N	Z S	N	N	N D	N	z	Z	z	U	z	z	Z	Z	z	Ω	Ω
																80	.0837	89.	60	8	89	89.	8	.0912		-	-	Ξ.	=	Ε:				.2						.58	Ŕ
REAL WAY OF THE REAL WAY IN THE REAL PROPERTY OF TH	214	228	229	231	271	273	277.8574	288	294	298	298.9353	302	313	330	357	80.0	0.0837	0.09	0.00	0.00	0.09	0.00	0.00	0.0912	0.1	0.1	0.1	0.11	0.11	0.11	0.00	0.1	0.1	0.2	0.11	0.11	0.11	0.12	0.12	0.58	0.64
ALK IV.	MANGANESE	MANGANESE	MANGANESE	MANGANESE	MANGANESE	MANGANESE	MANGANESE	MANGANESE	MERCURY	MOLYBDENUM	MOLYBDENTM																														
8778	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG		TRG														
W (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REAL	REAL	DUP	REAL	DUP	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL																								
DAVIE VIN	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	16-JUN-94	20-JUN-94	16-JUN-94	16-JUN-94	16-JUN-94	16-JUN-94	16-JUN-94	23-JUN-94	23-JUN-94																								
SHA (CELLAN)	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08~JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94														
***	SS00113EG	SS00116EG	SS00122EG	SS00117EG	SS00125EG	SS00105EG	SS00125EG	SS00115EG	SS00120EG	SS00103EG	SS00123EG	SS00111EG	SS00123EG	SS00112EG	SS00121EG	SS00111EG	SS00123EG	SS00118EG	SS00106EG	SS00107EG	SS00125EG	SS00105EG	SS00114EG	SS00125EG	SS00123EG	SS00112EG	SS00122EG	SS00121EG	SS00103EG	SS00113EG	SS00116EG	SS00110EG	SS00108EG	SS00124EG	SS00109EG	SS00119EG	SS00115EG	SS00117EG	SS00120EG	SS00106EG	SS00110EG
	5	2	DS	Σ	E	DZ	ß	<u>P</u> 4	2	B	2	VS	3	9	7	٧5	<u>₽</u>	7	⊼	۸2	Ы	22	2	E	£	8	2	Ā	B	5	Æ	^	D3	E	5	표	푎	3	2	≅	V
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	SS106194	SS106494	SS107094	SS106594	SS107294	SS105394	SS107294	SS106394	SS106894	SS107294	SS107194	SS105994	SS107194	SS106094	SS106994	SS105994	SS107194	SS106694	SS105494	SS105594	SS107294	SS105394	SS106294	SS107294	SS107194	SS106094	SS107094	SS106994	SS107294	SS106194	SS106494	SS105894	SS105694	SS107294	SS105794	SS106794	SS106394	SS106594	SS106894	SS105494	SS105894

(4.13)	8	\$	40	40	40	40	40	40	40	6	9	40	9	40	40	40	40	9	9	40	40	200	40	8	8	∞	8	∞	&	∞	∞	&	8	8	«	∞	8	œ	∞	∞	8
	MG/KG	Ц	MG/KG	MG/KG	MG/KG	MG/KG	L	MG/KG	MG/KG		MG/KG	MG/KG	MG/KG	UG/L 2	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG								
		Ĭ	M	M		M	M	M	W	M	M	MC	W	M	M	M	MC	W	×			U	n	M	M	M	M	M	MC	Ĭ	W	Ĭ	M	Ĭ	M	Ĭ	M		ž	ž	Ž
	0.325	0.37	0.38	0.43	0.485	0.55	0.55	0.55	0.55	9.0	9.0	9.0	0.65	0.75	0.75	8.0	8.0	8.0	6.0	0.9135	0.9515	1.5	3	3.8	6.4	6.7	7	7.2	7.6	8.6	8.8	9.4	9.8	9.6	10.2	10.9	11	11.0962	11.2	11.8	12.4
8886		7	7	7	7	7	7	7	7	7	7	7	<i>L</i>	4	4	<i>L</i>	1	7	7					8	8														Ц		
100	<u>₹</u>	ÌΑ	JA	JA	JA	JA	JA	JA	۲	Ϋ́	٧ſ	Νſ	Ví.	Υſ	Υſ	٧ſ	ΙV	ΥY	Ϋ́	Z	Z	^	^	JA	ΥY	^	>	^	^	>	^	>	>	^	^	>	>	Z	>	>	>
	٥	n	Ω	Ω	Ū	n	_n_	n	Ω	U	U	ū	Ω	Ω	n	Ω	Ω	Ω	n	В	В	n	Ω	В	В	В	В	В	В												
B0004	છ	.74	.76	.86	.97	1.1	1.1	1.1	==	1.2	1.2	1.2	1.3	1.5	1.5	1.6	1.6	1.6	1.8			3	9					П													
	0.65	0.74	0.76	0.86	76.0	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.3	1.5	1.5	1.6	1.6	1.6	1.8	0.9135	0.9515	3	9	3.8	6.4	6.7	7	7.2	7.6	8.6	8.8	9.4	9.8	6.6	10.2	10.9	11	11.0962	11.2	11.8	12.4
ANALYTE.	MOLYBDENUM	NICKEL	NICKEL,	NICKEL,	NICKEL	NICKEL	NICKEL,	NICKEL	NICKEL	NICKEL,	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL																					
	TRG	dna	dna	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG																		
300000	REAL	DUP	REAL	RNS	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL																		
TANGENTE	23-JUN-94	15-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94																				
SAMPLY II	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94
2000	SS00122EG	SS00107EG	SS00111EG	SS00118EG	SS00119EG	SS00117EG	SS00109EG	SS00108EG	SS00114EG	SS00103EG	SS00115EG	SS00113EG	SS00125EG	SS00112EG	SS00116EG	SS00123EG	SS00121EG	SS00105EG	SS00120EG	SS00123EG	SS00125EG	SS00124EG	SS00124EG	SS00106EG	SS00118EG	SS00105EG	SS00109EG	SS00117EG	SS00110EG	SS00116EG	SS00122EG	SS00115EG	SS00108EG	SS00120EG	SS00119EG	SS00112EG	SS00123EG	SS00123EG	SS00114EG	SS00107EG	SS00121EG
X X X X X	2	72	VS	7	P1	P3	V3	D3	De	Ы	P4	L/A	Ь	9/	PS	P6	D4	D2	72	P6	Ы	Ы	Ы	DI	Λ1	D2	٨3	33	٧4	P3	DS	P4	D3	P2	P1	9.0	P6	P6	D6	Λ2	D4
273	SS107094	SS105594	SS105994	SS106694	SS106794	SS106594	SS105794	SS105694	SS106294	SS107294	SS106394	SS106194	SS107294	SS106094	SS106494	SS107194	SS106994	SS105394	SS106894	SS107194	SS107294	SS107294	SS107294	SS105494	SS106694	SS105394	SS105794	SS106594	SS105894	SS106494	SS107094	SS106394	SS105694	SS106894	SS106794	SS106094	SS107194	SS107194	SS106294	SS105594	SS106994

INORGANICS: RAW DATA

***				_	_	_	1	_	7	_	т-	,	,	_	,	т-	,	_	, -	, 	_	1	_	,	,	-	,								_		T	_			
3 (12.0)	∞	8	8	8	œ	5000	1000	1000	1000	1000	1000	900	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1	1	1	1	-	1	-	1	-	5	-	-
***	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UGAL	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UG/L	MG/KG	MG/KG												
# 3 K 5 K 5 W	12.5	12.8	13.4781	14	14	122	1110	1380	1630	1640	1730	1830	1860	1890	2030	2040	2051.0792	2070	2090	2150	2240	2240	2310	2335.957	2580	2650	2690	2750	2830	0.29	0.305	0.305	0.305	0.30565	0.31	0.315	0.32	0.335	0.5	89.0	69.0
				_								-				-	H	r		-					Н										_						
																															2										
***	>	>	2	Λ	^	^	>	>	>	>	>	>	Λ	Λ	Λ	^	Z	^	۸	Λ	۸	۸	Λ	2	^	Λ	Λ	Λ	Λ	>	¥	^	Λ	\mathbf{z}	Λ	Λ	Λ	Λ	Λ	Λ	۸
						ם																								U	U	U	U	U	U	U	U	U	U	В	В
						244																								.58	19:	19:	19:	.6113	.62	.63	2 9.	.67	-		٦
PRV	12.5	12.8	13.4781	14	14	244	1110	1380	1630	1640	1730	1830	1860	1890	2030	2040	2051.0792	2070	2090	2150	2240	2240	2310	2335.957	2580	2650	2690	2750	2830	0.58	0.61	0.61	0.61	0.6113	0.62	0.63	0.64	0.67	-	89.0	0.69
ALIVATA NATA	NICKEL	NICKEL	NICKEL	NICKEL	NICKEL	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	POTASSIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM	SELENIUM													
77.8	TRG	TRG	PUP	TRG	DUP	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG	TRG	TRG												
* (* ? > > * * > * * * * * * * * * * * * * * * * * * *	REAL	REAL	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL																			
ANALIANTE	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	20-JUN-94	27-JUN-94	20-JUN-94	20-JUN-94	27-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	17-JUN-94	20-JUN-94	20-JUN-94												
al Video.	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94							
63333	SS00111EG	SS00125EG	SS00125EG	SS00103EG	SS00113EG	SS00124EG	SS00106EG	SS00122EG	SS00109EG	SS00116EG	SS00110EG	SS00117EG	SS00118EG	SS00119EG	SS00105EG	SS00115EG	SS00123EG	SS00121EG	SS00112EG	SS00125EG	SS00108EG	SS00123EG	SS00113EG	SS00125EG	SS00114EG	SS00103EG	SS00120EG	SS00107EG	SS00111EG	SS00106EG	SS00125EG	SS00116EG	SS00105EG	SS00125EG	SS00118EG	SS00107EG	SS00113EG	SS00121EG	SS00124EG	SS00112EG	SS00122EG
2000	\$	E	ы	М	2	М	百	DS	٨3	PS	V4	2	5	ā	22	P4	32	74	9/	Ы	D3	28	4	ы	<u>2</u>	E	2	2	\$	百	E	E	D2	ы	5	72	۲۷	74	B	8	2
	SS105994	SS107294	SS107294	SS107294	SS106194	SS107294	SS105494	SS107094	SS105794	SS106494	SS105894	SS106594	SS106694	SS106794	SS105394	SS106394	SS107194	SS106994	SS106094	SS107294	SS105694	SS107194	SS106194	SS107294	SS106294	SS107294	SS106894	SS105594	SS105994	SS105494	SS107294	SS106494	SS105394	SS107294	SS106694	SS105594	SS106194	SS106994	SS107294	SS106094	SS107094

883		_														_			Г						_						_			_					П		\neg
1418	-	1	1	1	1	1	1	1	1	1	1	1	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	18	2	2	100	100	100	100	2	2	2	2	7
N S S	MG/KG	UG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG											
	0.71	0.73	0.75	0.79	0.79	0.81	0.84	0.86	0.8824	0.89	1 76.0	1.4	31.3	934	1180	1190	1209.7498	1240		1280	1290		1360	1360	1420	1440	1460	1470		1485.5286		1510	1570	1580	1650	1650	0.19	0.7		Н	0.20375
	-						_					_		10	10	10	12	10	10	10	10	10	10	10	10	10	10	10	10	14	10	10	10	10	10	10			\vdash	Н	\dashv
	\dashv	\dashv		Н	-	Н	_	Н	Ц	Ц	Н	Н	7	12 1	12 1	12 1	H	12 1	Н	12 1	12 1	12 1	12 1	12 1	12 1	12 1	12 1	12 1	12 1	Н	12 1	12 1	12 1	12 1	12 1	12 1	Н	Н	Н	Н	\dashv
888 887	\dashv	-	Н	Ц	Н		-	Н	Н	Н		_		-	Н	H	H	Н	Н	Н	Н	-		Н	-	Н	Н	Н	Н	Н	-	-	Н	Н	Н	Н		Н	Н	Н	\dashv
	>	^	۸	^	^	۸	^	Λ	7	Λ	<u> </u>	^	JA	At	JA	JA	Z	JA	Ϋ́	JA	JA	JA	J.A	JA.	JA	JA	At) JA	JA.	Z	JA	JA	A(JA.	JA	I JA	Λ	Λ			\overline{z}
88008	m	Э	В	В	В	В	B	В	В	В	В		U	z	z	z		z	z	z	Z	z	z	Z	Z	z	Z	Z	z		z	Z	Z	Z	Z	Z	U	Ω	٦	٦	S
													62.6																								38	4.	4.	4.	.4075
10 St. 18 8 8	0.71	0.73	0.75	0.79	0.79	0.81	0.84	0.86	0.8824	0.89	0.97	1.4	62.6	934	1180	1190	1209.7498	1240	1270	1280	1290	1330	1360	1360	1420	1440	1460	1470	1480	1485.5286	1510	1510	1570	1580	1650	1650	0.38	0.4	0.4	0.4	0.4075
2002	TRG SELENIUM	DUP SELENIUM	TRG SELENIUM	TRG SELENIUM	TRG SELENIUM	TRG SILICON	TRG SILICON	TRG SILICON	TRG SILICON	DUP SILICON	TRG SILICON		TRG SILICON	DUP SILICON	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	DUP SILVER																						
*	REAL	REAL	REAL	REAL	. REAL	REAL	\vdash	REAL	REAL	REAL	\vdash	REAL	RNS	REAL	REAL	REAL	REAL	REAL		REAL	REAL		REAL	H	REAL	Н	REAL	REAL	\vdash	REAL	REAL	REAL	REAL	REAL		REAL	REAL	REAL	REAL	REAL	REAL
ANALINA	20-JUN-94	15-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-IUN-94	26-JUN-94	26-JUN-94	26-JUN-94	26-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94											
SAMPLE	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-IUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94
888	SS00119EG	SS00111EG	SS00110EG	SS00115EG	SS00114EG	SS00120EG	SS00103EG	SS00117EG	SS00123EG	SS00109EG	SS00123EG	SS00108EG	SS00124EG	SS00105EG	SS00116EG	SS00109EG	SS00123EG	SS00122EG	SS00106EG	SS00118EG	SS00110EG	SS00117EG	SS00115EG	SS00125EG	SS00123EG	SS00112EG	SS00111EG	SS00120EG	SS00103EG	SS00125EG	SS00107EG	SS00108EG	SS00121EG	SS00113EG	SS00114EG	SS00119EG	SS00106EG	SS00117EG	SS00110EG	SS00120EG	SS00125EG
83	PI	V5	V4	P4	D6	P2	P7	РЗ	P6	٧3	P6	D3	М	D2	P5	V3	28	D5	ΙΩ	٧ı	٧4	13	P4	P7	P6	9/	VS	P2	P7	M	V2	D3	D4	7.7	D6	P1	DI	ВЗ	٧4	22	Ы
201	SS106794	SS105994	SS105894	SS106394	SS106294	SS106894	SS107294	SS106594	SS107194	SS105794	SS107194	SS105694	SS107294	SS105394	SS106494	SS105794	SS107194	SS107094	SS105494	SS106694	SS105894	SS106594	SS106394	SS107294	SS107194	SS106094	SS105994	SS106894	SS107294	SS107294	SS105594	SS105694	SS106994	SS106194	SS106294	SS106794	SS105494	SS106594	SS105894	SS106894	SS107294

INORGANICS: RAW DATA

***			Ι-	Τ	Γ	Γ	Ī	<u> </u>	Γ	Γ	<u> </u>	Γ		Γ	Γ	Γ		Γ	Γ	٥	0	0	0	0	0	0	o			0	٥	0	0	0	6	6	6	<u>-</u>	6		
CRO	1 2	2	L		L	L		2	2	2	2	2	2		2	2			10	2000	1000	_	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	NG/L	NG/L	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG
	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.20715	0.21	0.21	0.21	0.21	0.21	0.21	0.215	0.22	0.22	1	14	43.8	45.8	47.5952	48.6	49.1	50.7	51.3	54.1	54.2	55.6	56.4696	57	60.4	62.6	64.8	67.3	72.1	73.3	78.3	79.3	79.7
			L																																						
2000 2000 2000	Ц	∞	_	80	6	8		L		8	8	∞	8			8	_	8		8								Ц						6						Ц	
	^	JA	^	JA	JA	JA	^	^	\mathbf{z}	JA	JA	_₹	ΙV	^	^	JA	۸	JA	>	ΙV	^	Λ	Z	>	>	>	^	>	>	>	7	>	>	JA	^	^	۸	^	>	>	>
KYRY X	U	n	Ω	U	U	Ω	n	n	n	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	n	В	В	В	В	В	B	В	В	B	B	В	В	В	В	В	В	В	B	B	В	B	В
8 (3) 8	.41	.41	.41	.41	.41	.41	.41	.41	.4143	.42	.42	.42	.42	.42	.42	.43	.44	.44	2																						
3.8.8.8	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.4143	0.42	0.42	0.42	0.42	0.42	0.42	0.43	0.44	0.44	2	14	43.8	45.8	47.5952	48.6	49.1	50.7	51.3	54.1	54.2	55.6	56.4696	57	60.4	62.6	64.8	67.3	72.1	73.3	78.3	79.3	T.6T
TYPE ANALYTE		づ	TRG SILVER	DUP SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SILVER	TRG SODIUM	TRG SODIUM	TRG SODIUM	DUP SODIUM	TRG SODIUM	┪	TRG SODIUM	_	┪	_	╗		TRG SODIUM	T	TRG SODIUM		TRG SODIUM										
a (Coco	+	\dashv	REAL 1		DUP	\dashv	REAL 1		REAL I	\dashv	REAL 1	REAL 1	REAL 1	\dashv	┪	REAL T	REAL 1	REAL T	\dashv	RNS	+	REAL 1	\dashv	1	\dashv	REAL T	\dashv	1	\dashv	+	\dashv	\dashv	1	DUP	REAL T	REAL T		REAL T	REAL T	+	REAL T
ANN STATE	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	15-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94
NA METOLETIC	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94
8333	SS00105EG	SS00122EG	SS00116EG	SS00118EG	SS00103EG	SS00123EG	SS00125EG	SS00112EG	SS00123EG	SS00108EG	SS00115EG	SS00111EG	SS00107EG	SS00113EG	SS00119EG	SS00109EG	SS00121EG	SS00114EG	SS00124EG	SS00124EG	SS00118EG	SS00117EG	SS00123EG	SS00110EG	SS00109EG	SS00121EG	SS00112EG	SS00119EG	SS00106EG	SS00115EG	SS00125EG	SS00105EG	SS00122EG	SS00103EG	SS00114EG	SS00111EG	SS00107EG	SS00116EG	SS00123EG	SS00113EG	SS00125EG
	22	DŞ	P5	Z	M	32	Ы	%	%	<u>13</u>	P4	٧۶	72	۸۲	F	V 3	D4	D6	Ы	Ы	71	2	28	V4	۲3	7	9	ā	╗	P4	ы	D2	25	Ы	De	٧5	72	Z	3	5	Ы
9773	SS105394	SS107094	SS106494	SS106694	SS107294	SS107194	SS107294	SS106094	SS107194	SS105694	SS106394	SS105994	SS105594	SS106194	SS106794	SS105794	SS106994	SS106294	SS107294	SS107294	SS106694	SS106594	SS107194	SS105894	SS105794	SS106994	SS106094	SS106794	SS105494	SS106394	SS107294	SS105394	SS107094	SS107294	SS106294	SS105994	SS105594	SS106494	SS107194	SS106194	SS107294

INORGANICS: RAW DATA

*	C	_	Γ	<u> </u>	Γ	Γ	Γ	Γ	Γ	Γ	Γ	Г			Γ			Ţ	<u></u>	Г		Г	_	Γ	<u> </u>	1											\Box			<u></u>	
	1000	1000	700			\$	40	8	40	\$	40	\$	40	40	40	40	9	9	40	9	9	9	9	40	9	용	2	7	2	2	2	2	2	2	7	2	2	2	2	2	7
	MG/KG	MG/KG	NG/L	MG/KG																																					
W. 18 18 18 18 18 18 18 18 18 18 18 18 18	81.5	105	0.5	9.6	17	18.6	21.2	21.4	22.3	22.5	22.9	23.1	24	26.1	27.7145	28.8	30.2	32.3	33.4274	33.5	35.4	36.5	43.5	44.6	44.7	45.2	0.385	0.4	0.4	0.405	0.405	0.405	0.4075	0.41	0.41	0.41425	0.415	0.415	0.415	0.415	0.415
XX.88 XX.8			L																																						
			L	L		\vdash	L		L			L				Ц	L	L	L		6			L	L		8	8	8	8	∞	∞		8			8	8	Н	8	8
M 8.23.88	Λ	<u> </u>	Λ	^	Λ	>	^	^	^	^	Λ	^	^	Λ	Z	N	۸	A	Z	۸	JA	Λ	^	Λ	<u>^ </u>		At	PΙ	R	ΙV	Ϋ́	γ	Z	I JA	Λ	Z	Υſ	R	R	Y	H
# X 3 8 3 %	В	В	Ω	В	B	æ	В	В	æ	В	B	В	В	В	В	B	B	В	В	В	В	В					Ω	n	n	Ω	Þ	ב	n	Ω	n	n	Ω	Ω	Þ	Ω	٥
			1																								.77	8.	8.	18.	.81	.81	.815	.82	.82	.8285	.83	.83	.83	.83	.83
NAME OF STREET	81.5	105	1	9.6	17	18.6	21.2	21.4	22.3	22.5	22.9	23.1	24	26.1	27.7145	28.8	30.2	32.3	33.4274	33.5	35.4	36.5	43.5	44.6	44.7	45.2	0.77	0.8	0.8	0.81	0.81	0.81	0.815	0.82	0.82	0.8285	0.83	0.83	0.83	0.83	0.83
ANAL MATE	SODIUM	SODIUM	STRONTIUM	THALLIUM	MATTIVIL	Martivill																																			
	TRG	DUP	TRG	TRG	TRG	DUP	TRG	DUP	TRG	TRG	DUP	TRG	TRG	TRG	TRG	TRG																									
1002.00	REAL	REAL	RNS	REAL	REAL.	DUP	REAL	DUP	REAL	REAL	REAL																														
ALVIE VAN	23-JUN-94	23-JUN-94	15-JUN-94	23-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	27-JUN-94	20-JUN-94	27-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94	20-JUN-94																						
AN COLON	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94						
***	SS00120EG	SS00108EG	SS00124EG	SS00106EG	SS00118EG	SS00117EG	SS00105EG	SS00110EG	SS00109EG	SS00116EG	SS00122EG	SS00115EG	SS00120EG	SS00112EG	SS00123EG	SS00123EG	SS00119EG	SS00125EG	SS00125EG	SS00121EG	SS00103EG	SS00111EG	SS00113EG	SS00107EG	SS00108EG	SS00114EG	SS00106EG	SS00120EG	SS00117EG	SS00105EG	SS00116EG	SS00110EG	SS00125EG	SS00118EG	SS00125EG	SS00123EG	SS00122EG	SS00103EG	SS00119EG	SS00112EG	SS00123EG
	22	<u>D3</u>	ы	ā	VI	3	77	44	٧3	æ	DS	P4	22	9/	2	2	P1	М	М	D4	М	٧5	7.7	V2	D3	26	D1	22	2	D2	33	44	Ы	ĩλ	ы	£	2	A	百	9	33
LOCALIDA SER	SS106894	SS105694	SS107294	SS105494	SS106694	SS106594	SS105394	SS105894	SS105794	SS106494	SS107094	SS106394	SS106894	SS106094	SS107194	SS107194	SS106794	SS107294	SS107294	SS106994	SS107294	SS105994	SS106194	SS105594	SS105694	SS106294	SS105494	SS106894	SS106594	SS105394	SS106494	SS105894	SS107294	SS106694	SS107294	SS107194	SS107094	SS107294	SS106794	SS106094	SS107194

INORGANICS: RAW DATA

***	_		_	r	Т	Г	T	_	_	Т	Г	_	_	т			Т	_	1	Γ-	_	Γ	_	т—	1	r						_		_	Ι	_		_			
CRIBE	2	7	2	2	7	2	2	2	2	5	5	5	5	\$	40	6	9	9	9	9	9	9	9	40	8	\$	40	40	40	40	40	40	200	20	2	10	10	10	10	2	10
SA S	MG/KG	NGA	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	MG/KG	UG/L	UG/L	MG/KG													
3860	0.42	0.42	0.42	0.425	0.425	0.43	0.445	0.88	-	1.35	1.35	1.5	1.5	1.65	1.7	1.8	1.8	1.85	2.05	2.05	2.2	2.2	2.25	2.25	2.3	2.35	2.45	2.55	2.55	2.9	4.6543	4.8452	5	1	10.8	17.5	18	23.1	23.3	23.6	24.5
	7							\vdash			_		lacksquare				-		\vdash			-	_		\vdash										H	-				Н	
	∞	∞	8	8		8	8	8		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	٦				T	Ī			Н	П	Π
	š	Я	R	JA	۸	JA	Ι¥	×	>	Ϋ́	Ϋ́	JA	Ϋ́	JA	JA	JA	Ϋ́	Υſ	ΙΥ	JA	ΙV	JA	JA	Ι¥	ΙV	JA	JA	ΙĄ	JA	Υ	Z	Z	Λ	۸	^	>	Λ	^	Λ	^	>
	Þ	n	U	U	n	U	U	В	Ω	n	n	n	U	U	U	U	Ω	U	U	U	U	U	U	U_	U	U	U	Ω	U	n	В	В	Ω	U		-					_
33333	8,	.84	.84	.85	.85	98.	86		2	2.7	2.7	3	3	3.3	3.4	3.6	3.6	3.7	4.1	4.1	4.4	4.4	4.5	4.5	4.6	4.7	4.9	5.1	5.1	5.8	7		10	2		_					\dashv
	0.84	0.84	0.84	0.85	0.85	98.0	0.89	0.88	2	2.7	2.7	3	3	3.3	3.4	3.6	3.6	3.7	4.1	4.1	4.4	4.4	4.5	4.5	4.6	4.7	4.9	5.1	5.1	5.8	4.6543	4.8452	10	2	10.8	17.5	18	23.1	23.3	23.6	24.5
11.00 to 10.00 to 10.	THALLIUM	TIN	TIN	TIN	TIN	TIN	TIN	TIN	TIN	TIN	TIN	NIL	TIN	TIN	TIN	NIT	TIN	NIT	TIN	TIN	TIN	NII	NI.	NIL	NI	VANADIUM															
11.1	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	DUP	DI	TRG																				
(00000)	REAL	RNS	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	RNS	RNS	REAL													
SIVE TYNY	20-JUN-94	22-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94	15-JUN-94	15-JUN-94	23-JUN-94													
THE STATE OF	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94
3333	SS00107EG	SS00111EG	SS00115EG	SS00113EG	SS00108EG	SS00109EG	SS00121EG	SS00114EG	SS00124EG	SS00103EG	SS00116EG	SS00109EG	SS00115EG	SS00120EG	SS00105EG	SS00106EG	SS00118EG	SS00110EG	SS00108EG	SS00121EG	SS00119EG	SS00123EG	SS00113EG	SS00117EG	SS00112EG	SS00111EG	SS00125EG	SS00107EG	SS00122EG	SS00114EG	SS00123EG	SS00125EG	SS00124EG	SS00124EG	SS00106EG	SS00105EG	SS00109EG	SS00122EG	SS00110EG	SS00118EG	SS00117EG
	72	^	P4	7.	D3	٧3	7	2	М	P7	IJ	٧3	조	12	D2	ā	71	44	D3	D4	Ы	ž	4	2	8	ζ.	B	2	22	2	2	N	E	ы	DI	D2	5	D\$	44	5	3
AND	55105594	SS105994	SS106394	SS106194	SS105694	SS105794	SS106994	SS106294	SS107294	SS107294	SS106494	SS105794	SS106394	SS106894	SS105394	SS105494	SS106694	SS105894	SS105694	SS106994	SS106794	SS107194	SS106194	SS106594	SS106094	SS105994	SS107294	SS105594	SS107094	SS106294	SS107194	SS107294	SS107294	SS107294	SS105494	SS105394	SS105794	SS107094	SS105894	SS106694	SS106594

99999		_				_	_			_			_	_	_		_	_				_	_	_												-				_
(6.01)	10	10	10	10	10	10	10	10	10	10	2	10	10	10	10	10	20	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
NI S	MG/KG	UG/L	MG/KG	MG/KG	MG/KG																																			
	24.8	26.5	28.3	28.6	29	29.0153	30.4	30.8	31.2	32.6	34.2	35.6	36.1	39.3647	41.7	45.8	4.3	21.1	35.5	39.5	40.3	41.2	41.2	43.7	45.4	45.6398	46.4	47.7	48.3	53.5784	55	55.6	99	57.6	58.3	59.3	59.9	60.5	64.7	75.9
8.2.8																																								
		Ц				Ц	L				L	Ц			Ц		7	11	17	17	17	17	117	17	17		17	17	=		17	11	17	17	17	17		17	17	17
	^	^	Λ	Λ	^	Z	^	Λ	Λ	^	>	^	Λ	Z	>	^	JA	JA.	JA	JA	JA	JA	JA	JA	ÌΑ	Z	Ϋ́	Ϋ́	Y	Z	¥	JA	JA	JA	JA	Y	>	Y	ΙV	Y
																	n	Ε	Е	Ε	E	ш	Э	В	田		田	田	H		Ш	Э	Ξ	Ε	Е	Ε		E	Ε	Ξ
200																	8.6																							\sqcap
	24.8	26.5	28.3	28.6	29	29.0153	30.4	30.8	31.2	32.6	34.2	35.6	36.1	39.3647	41.7	45.8	8.6	21.1	35.5	39.5	40.3	41.2	41.2	43.7	45.4	45.6398	46.4	47.7	48.3	53.5784	55	55.6	99	57.6	58.3	59.3	59.9	60.5	64.7	75.9
ANALIN	VANADIUM	ZINC	ZINC	ZINC																																				
28	TRG	TRG	TRG	TRG	TRG	DUP	TRG	DUP	TRG	DUP	TRG	TRG	TRG	DUP	TRG SE	TRG	TRG	TRG																						
8.(4(0××5)6)	REAL	REAL.	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	RNS	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL																					
ANALDATE	23-JUN-94	15-JUN-94	23-JUN-94	23-JUN-94	23-JUN-94																																			
STATE OF THE STATE	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94													
44.404.42	SS00108EG	SS00116EG	SS00115EG	SS00119EG	SS00120EG	SS00123EG	SS00114EG	SS00123EG	SS00107EG	SS00121EG	SS00112EG	SS00125EG	SS00113EG	SS00125EG	SS00103EG	SS00111EG	SS00124EG	SS00106EG	SS00118EG	SS00117EG	SS00110EG	SS00109EG	SS00116EG	SS00105EG	SS00122EG	SS00123EG	SS00115EG	SS00119EG	SS00123EG	SS00125EG	SS00120EG	SS00113EG	SS00112EG	SS00103EG	SS00108EG	SS00121EG	SS00125EG	SS00114EG	SS00111EG	SS00107EG
	2	PS	74	핇	2	3	De	P6	V2	D4	9/	М	77	М	P7	V5	M	D1	V1	73	٧4	V3	E	20	52	3	P4	畐	3	Ы	2	77	9/	P7	D3	74	М	D6	٧۶	٧2
1200	SS105694	SS106494	SS106394	SS106794	SS106894	SS107194	SS106294	SS107194	SS105594	SS106994	SS106094	SS107294	SS106194	SS107294	SS107294	SS105994	SS107294	SS105494	SS106694	SS106594	SS105894	SS105794	SS106494	SS105394	SS107094	SS107194	SS106394	SS106794	SS107194	SS107294	SS106894	SS106194	SS106094	SS107294	SS105694	SS106994	SS107294	SS106294	SS105994	SS105594

INORGANICS: RAW DATA

NATURALLY OCCURRING RADIONUCLIDES

This section includes the raw data spreadsheets for the naturally occurring radionuclides. They are organized as indicated in the introduction of Appendix B, except the Type2 column was eliminated and a sampling date (Sampdate) column, analysis date (Analdate) column and an error column (Err) were added.

NATURALLY OCCURRING RADIONUCLIDES: RAW DATA

880		_	_			- -	T	T_	I	1	ī	T	Ι-		_	Г	_	_	Г	_	Г	_												Г	T		Γ-		Γ		T	
(31)88	0.06	0.07	0.07	0.07	0.08	0.08	0.08	0.0	9	9	0.1	9	0.1	0.2	0.2	0.2	0.2	0.7	0.2	0.2	0.2	0.2	0.2	0.07	0.00	0.15	0.07	0.11	0.07	0.07	0.09	0.13	0.11	0.2	0.15	0.16	0.31	0.1	0.16	0.13	0.0	0.17
	Ц			78		L	L	_	L	L	L		L													78	78	78	28		78	78	8/	78	78	81	78	8/	78	78	8/	78
***	_		L	L				L		L		L	_	L	L			L	L	L			Ц	Ц			Н							_	L		L	Ш	_		Ц	4
	V	Λ	V	<u> </u>	Λ	Λ	^	>	^	^	>	>	>	>	>	^	^	>	>	>	Λ	^	_	^	Λ	Λ	Λ	Λ	Λ	^	^	Λ	Λ	>	>	^	>	Λ	^	^	Λ	^
	D	n	n	Ω	n	Ω	þ	Þ	þ	Þ	ם	Þ	ם	Þ	ם	n	n	ם	ם	Э	n	Þ	n	n	Ω	J	ī	-	J													
																										0.13	0.064	0.095	0.075	0.075	0.088	0.15	0.11	0.20	0.18	0.20	0.20	0.15	0.22	0.17	0.092	0.22
	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI//G	PC1/G	PCI/G	PC1/G	PCI/G																															
		0.07	0.07	0.07	0.08	80.0	80.0	60.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.07	0.09	0.23	0.32	0.33	0.42	0.62	0.64	0.73	0.74	0.77	0.87	0.88	0.89	1	1	1.1	1.2	1.2
2000	CESIUM-134	CESIUM-137																																								
	TRG	REP	REP	TRG	REP	TRG	REP	TRG																																		
	REAL	DUP	REAL	DUP	REAL	DUP	REAL	DUP	REAL	REAL	REAL	REAL	REAL																													
N. 3.5.5 8 3.7.8 4.	30-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	01-AUG-94	01-AUG-94	01-AUG-94	29-JUL-94	29-JUL-94	30-JUL-94	30-JUL-94	30-JUL-94	29-JUL-94	30-JUL-94	30-JUL-94	29-JUL-94	01-AUG-94	29-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	30-JUL-94	29-JUL-94	29-JUL-94	01-AUG-94	01-AUG-94	30-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94
any oany vy	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94
	SS00121EG	SS00115EG	SS00114EG	SS00122EG	SS00116EG	SS00113EG	SS00123EG	SS00106EG	SS00105EG	SS00109EG	SS00111EG	SS00107EG	SS00108EG	SS00125EG	SS00103EG	SS00105EG	SS00103EG	SS00110EG	SS00117EG	SS00120EG	SS00118EG	SS00112EG	SS00119EG	SS00121EG	SS00106EG	SS00105EG	SS00114EG	SS00105EG	SS00113EG	SS00122EG	SS00123EG	SS00108EG	SS00107EG	SS00125EG	SS00103EG	SS00118EG	SS00103EG	SS00109EG	SS00119EG	SS00111EG	SS00115EG	SS00110EG
866	7	P4	ρ	DS	FS.	77	P6	DI	D2	V 3	VS	V2	D3	ы	Ы	D2	Ы	V4	2	23	Ιλ	9/	Ы	D4	DΙ	D2	<u>D</u>	D2	77	52	2	<u> </u>	٧2	Ы	М	Z	М	V3	PI	VS	72	V4
	SS106994	SS106394	SS106294	SS107094	SS106494	SS106194	SS107194	SS105494	SS105394	SS105794	SS105994	SS105594	SS105694	SS107294	SS107294	SS105394	SS107294	SS105894	SS106594	SS106894	SS106694	SS106094	SS106794	SS106994	SS105494	SS105394	SS106294	SS105394	SS106194	SS107094	SS107194	SS105694	SS105594	SS107294	SS107294	SS106694	SS107294	SS105794	SS106794	SS105994	SS106394	SS105894

NATURALLY OCCURRING RADIONUCLIDES: RAW DATA

***	0.07	60.0	0.17	0.18	0.1	0.5	0.11	0.32	0.15	0.27	0.27	0.2	0.35	0.1	0.13	0.31	0.2	0.12	0.2	0.21	0.13	0.15	0.13	0.28	0.25	0.25	0.34	0.27	2	0.2	0.57	0.75	0.41	0.44	0.23	0.28	0.72	0.25	0.65	0.57	0.64	9.0
SGR9 PX	- 8/	 	78	78			78	┡	!	┡	▙	┡	┡	78) 8/	78 (78	┞	78	┡	<u> </u>	78	78 0	78 0	78 0	78 0	78	78 0	H		78 (78 0	78 () 8/	78 0	78	78	78	78	H	78 0	78
		-		_			Ė						-	ŀ		È	È										H								_							H
	>	Λ	Λ	Λ	۸	Å	>	^	Λ	>	>	>	^	Λ	Λ	^	>	>	>	>	>	>	>	^	>	Λ	>	Λ	Y	۸	۸	۸	Λ	Λ	^	>	^	>	Λ	^	^	^
					Ω	Ω	ſ																						U	UX	Х	Х	Х	X	×	×	Х	×	X	×	×	×
	0.085	0.17	0.22	0.23		0.28	0.10	0.33	0.15	0.25	0.27	0.20	0.31	0.11	0.12	0.29	0.22	0.13	0.24	0.21	0.13	0.13	0.13	0.29	0.24	0.26	0.32	0.28	0.52		0.57	99.0	0.44	0.41	0.24	0.28	0.62	0.26	0.61	0.56	0.63	99.0
	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/L	PCI/G	PCI/L	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PC1/G	PCI/G	PCI/G	PCI/G	PCI/G	PC1/G	PCI/G																					
SECTION	1.2	1.2	1.4	1.8	0.1	0.13	0.48	0.52	0.53	0.55	0.57	0.58	0.58	0.59	0.61	0.61	69.0	0.64	19'0	19.0	89.0	1.0	0.74	0.79	8.0	0.85	0.87	0.91	-0.27	0.2	0.92	86.0	0.99	1	1	1	1	1.2	1.3	1.3	1.4	1.4
TYPE ARAITE	TRG CESIUM-137	TRG CESIUM-137	TRG CESIUM-137	TRG CESIUM-137	TRG RADIUM-226	REP RADIUM-226	TRG RADIUM-226	REP RADIUM-226	TRG RADIUM-228	TRG RADIUM-228	TRG RADIUM-228	_		TRG RADIUM-228	TRG RADIUM 228		TRG RADIUM 228																									
2000 A	REAL T	REAL T	\dashv	REAL T	REAL T	\dashv	REAL T	DUP T		REAL T		REAL T	Н	REAL TI	REAL T	REAL TI	REAL T	REAL T	REAL TI	REAL TI	REAL T	REAL TI	REAL TI	REAL TI		DUP	REAL TI	REAL R			REAL TI	1		REAL TI	REAL TI	REAL TI	REAL T	REAL TI	REAL TI	REAL TI	\dashv	REAL TI
		<u>"</u>		_	_	4				R		Ц	Ц			-	R	R				R	R	R			Ц	\perp		2	X		2	R	R	R	R	R		Ä	H	<u>~</u>
AL VOLUME	29-JUL-94	29-JUL-94	30-JUL-94	30-JUL-94	30-JUL-94	04-OCT-94	29-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	30-JUL-94	29-JUL-94	30-JUL-94	30-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	29-JUL-94	01-AUG-94	01-AUG-94	01-AUG-94	09-AUG-94	30-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	29-JUL-94	30-JUL-94	29-JUL-94	29-JUL-94	01-AUG-94	29-JUL-94		30-JUL-94
ALLY CALLY TO	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94
6439355	SS00116EG	SS00112EG	SS00120EG	SS00117EG	SS00121EG	SS00124EG	SS00113EG	SS00103EG	SS00106EG	SS00109EG	SS00118EG	SS00107EG	SS00110EG	SS00114EG	SS00123EG	SS00120EG	SS00108EG	SS00122EG	SS00119EG	SS00111EG	SS00115EG	SS00105EG	SS00116EG	SS00117EG	SS00112EG	SS00103EG	SS00125EG	SS00105EG	SS00124EG	SS00121EG	SS00109EG	SS00103EG	SS00108EG	SS00107EG	SS00113EG	SS00122EG	SS00112EG	SS00114EG	SS00125EG	SS00111EG	SS00120EG	SS00119EG
	PS	90	72	2	74	М	٧7	Ы	D1	V3	V1	V2	V4	D6	8	P2	D3	DS	P1	VS	P4	D2	PS	13	9/	Ы	ы	D2	М	D4	V 3	М	D3	V2	V7	DS	9/	D6	М	VS	P2	Ρ1
NORNAME	SS106494	SS106094	SS106894	SS106594	SS106994	SS107294	SS106194	SS107294	SS105494	SS105794	SS106694	SS105594	SS105894	SS106294	SS107194	SS106894	SS105694	SS107094	SS106794	SS105994	SS106394	SS105394	SS106494	SS106594	SS106094	SS107294	SS107294	SS105394	SS107294	SS106994	SS105794	SS107294	SS105694	SS105594	SS106194	SS107094	SS106094	SS106294	SS107294	SS105994	SS106894	SS106794

NATURALLY OCCURRING RADIONUCLIDES: RAW DATA

(A)	0.34	0.24	0.71	0.34	0.44	0.26	0.27	0.45	0.35	0.53	0.03	0.007	0.01	0.01	0.01	0.007	0.01	0.01	10.0	0.01	0.008	0.009	0.009	0.01	0.009	0.007	0.01	0.00	0.01	0.01	0.00	0.01	0.01	0.02	0.02	0.00	0.003	0.008	0.005	0.008	0.005	0.004
	8	%	78	78	78	78	78	78	78	78																														П		
																																	30									
	>	>	>	>	^	۸	۸	Λ	Λ	^	Å	Λ	Λ	Λ	Λ	Λ	۸	^	>	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	>	R	Λ	Å	۸	۸	۸	۸	>	Λ	^
	×	×	×	Х	X	X	X	X	X	X	Ω																								n	ſ	J	J	J	J	J	J
	0.35	0.26	0.71	0.53	0.58	0.28	0.28	0.58	0.43	0.56	0.018	0.038	0.045	0.055	0.051	0.044	0.059	0.058	0.059	0.062	0.048	0.051	0.050	0.063	0.051	0.049	0.068	0.054	0.077	0.056	0.056	0.12	0.11	0.15	0.013	0.012	0.008	0.012	0.008	0.011	0.010	0.00
	FC1/G	PCI/G	PCI/G	PCI/G	DCI/G	PCI/G	PCI/G	PCI/G	D/IDd	PCI/G	PCI/L	PCI/G	PC1/G	PC1/G	PCI/G	PCI/L	PCI/G																									
THE STATE OF	1.5	1.5	1.5	1.6	1.7	1.8	2	2.1	2.3	2.3	0.002	0.66	0.73	0.78	0.79	0.81	0.81	0.81	0.85	0.85	0.91	0.94	0.94	0.95	0.96	1	1	1.1	1.1	1.1	1.1	2.3	2.6	3.1	0.007	0.033	0.034	0.034	0.035	0.038	0.04	0.041
	KADIUM-228	RADIUM-228	URANIUM-233,-234	URANIUM-235																																						
) KG	IRG	TRG	TRG	REP	TRG	TRG	TRG	TRG	REP	TRG	REP	TRG	REP	TRG	TRG	TRG	TRG	REP	TRG	TRG	TRG	TRG																			
100000	KEAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	DUP	REAL.	REAL	RNS	REAL	REAL	DUP	DUP	REAL	REAL	REAL												
***	29-JUL-94	30-JUL-94	30-JUL-94	29-JUL-94	01-AUG-94	29-JUL-94	29-JUL-94	30-JUL-94	29-JUL-94	01-AUG-94	10-AUG-94	07-AUG-94	07-AUG-94	07-AUG-94	07-AUG-94	05-AUG-94	07-AUG-94	06-AUG-94	07-AUG-94	10-AUG-94	07-AUG-94	07-AUG-94	07-AUG-94	05-AUG-94	07-AUG-94	07-AUG-94	07-AUG-94															
an year year	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	107-JUN-94	98-JUN-94	98-1UN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	98-JUN-94	98-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94
	SSOOTOGE	SS00123EG	SS00118EG	SS00110EG	SS00103EG	SS00115EG	SS00116EG	SS00117EG	SS00105EG	SS00105EG	SS00124EG	SS00113EG	SS00109EG	SS00121EG	SS00107EG	SS00103EG	SS00125EG	SS00119EG	SS00123EG	SS00103EG	SS00111EG	SS00118EG	SS00108EG	SS00122EG	SS00110EG	SS00112EG	SS00120EG	SS00114EG	SS00116EG	SS00117EG	SS00115EG	SS00106EG	SS00105EG	SS00105EG	SS00124EG	SS00125EG	SS00113EG	SS00103EG	SS00103EG	SS00119EG	SS00107EG	SS00111EG
***	1 2	٤	Ķ	۸4	М	P4	PS	Z	D2	D2	М	77	٧3	<u>D</u> 4	Λ2	М	М	P1	P 8	М	VS	VI	D3	DS	٧4	۸6	22	<u>%</u>	æ	3	P4	DI	D2	D2	Ρ7	P7	77	Ы	Р7	Pi	V2	VS
NOTA SELECTION	33103494	5510/194	SS106694	SS105894	SS107294	SS106394	SS106494	SS106594	SS105394	SS105394	SS107294	SS106194	SS105794	SS106994	SS105594	SS107294	SS107294	SS106794	SS107194	SS107294	SS105994	SS106694	SS105694	SS107094	SS105894	SS106094	SS106894	SS106294	SS106494	SS106594	SS106394	SS105494	SS105394	SS105394	SS107294	SS107294	SS106194	SS107294	SS107294	SS106794	SS105594	SS105994

NATURALLY OCCURRING RADIONUCLIDES: RAW DATA

* (3 C H) *	900.0	800.0	0.007	0.004	0.004	0.003	0.009	0.007	0.004	0.0	0.00	0.004	0.004	0.007	9000	9000	0.01	9000	0.008	0.008	0.01	0.01	0.007	0.00	0.008	0.009	0.007	0.00	0.00	0.007	0.007	0.008	0.01	0.008	0.008	0.01	0.009	0.01	10.0	0.01
					_		_			L	_	L			30		_	_		-	_																		30	H
	Λ	Λ	Λ	Λ	Λ	>	>	>	>	>	>	>	>	>	R	Λ	Y	>	>	>	>	>	>	>	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	>	^	>	>	R	>
	J	J	J	J	J	J	-	-	-	-	_	ſ	ſ	_	J	J	Ω																							
W. S. S.	0.011	0.012	0.013	0.010	0.010	0.010	0.016	0.014	0.011	0.011	0.011	0.011	0.013	0.017	0.016	0.018	0.011	0.041	0.051	0.049	0.060	0.057	0.045	0.062	0.047	0.061	0.048	0.061	0.062	0.049	0.052	0.053	0.068	0.053	0.057	0.080	0.059	0.11	0.10	0.13
**************************************	PCI/G	PCI/L	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI//G	PCI/G																														
**************************************	0.042	0.042	0.043	0.044	0.046	0.049	0.052	0.052	0.055	0.056	0.058	0.064	0.077	0.1	0.11	0.11	0.007	0.74	8.0	0.81	0.83	0.83	0.84	0.86	0.87	0.89	6.0	0.92	0.92	86.0	1	1	1.1	1.1	1.1	1.1	1.2	2.1	2.3	2.6
ANALYTE	URANIUM-235	URANIUM-238																																						
	TRG	REP	TRG	REP	TRG	REP	TRG																																	
(10880)	REAL	RNS	REAL	REAL	REAL	REAL	REAL	DUP	DUP	REAL																														
ALVIEN NA	07-AUG-94	06-AUG-94	07-AUG-94	10-AUG-94	07-AUG-94	07-AUG-94	07-AUG-94	07-AUG-94	07-AUG-94	05-AUG-94	07-AUG-94	06-AUG-94	07-AUG-94																											
REFERENCE	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	08-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94	07-JUN-94
	SS00123EG	SS00122EG	SS00121EG	SS00109EG	SS00110EG	SS00112EG	S\$00116EG	SS00120EG	SS00115EG	SS00118EG	SS00108EG	SS00114EG	SS00117EG	SS00106EG	SS00105EG	SS00105EG	SS00124EG	SS00113EG	SS00107EG	SS00109EG	SS00125EG	SS00121EG	SS00103EG	SS00103EG	SS00108EG	SS00119EG	SS00111EG	SS00122EG	SS00123EG	SS00112EG	SS00110EG	SS00118EG	SS00120EG	SS00114EG	SS00115EG	SS00116EG	SS00117EG	SS00106EG	SS00105EG	SS00105EG
	2	2	4	23	44	9	R	22	P4	V1	23	80	2	ā	22	72	ы	77	Λ2	λ3	B	4	B	A	ñ	ā	25	š	2	9,	A	ī,	2	20	P4	P5	B	ā	77	D2
LOCATION	SS107194	SS107094	SS106994	SS105794	SS105894	SS106094	SS106494	SS106894	SS106394	SS106694	SS105694	SS106294	SS106594	SS105494	SS105394	SS105394	SS107294	SS106194	SS105594	SS105794	SS107294	SS106994	SS107294	SS107294	SS105694	SS106794	SS105994	SS107094	SS107194	SS106094	SS105894	SS106694	SS106894	SS106294	SS106394	SS106494	SS106594	SS105494	SS105394	SS105394

FALLOUT RADIONUCLIDES

This section includes the raw data spreadsheets for fallout radionuclides. They are organized as indicated in the introduction of Appendix A, except the Type2 column was eliminated and a sampling date (Sampdate) column, analysis date (Analdate) column and an error column (Err) were added.

FALLOUT RADIONUCLIDES: RAW DATA

	0.006	0.01	0.008	0.01	0.008	9000	0.008	0.004	0.01	0.007	0.007	0.008	0.01	10.0	0.005	0.007	0.009	0.01	0.01	0.005	0.007	0.01	0.01	0.01	10.0	900.0	9000	0.005	0.009	900.0	0.009	0.01	10.01	0.01	0.01	0.01	0.008	0.007	0.008	0.007	0.01
				_		L			_																										L			Н		-	4
		70												70															70									70		1	1
88.23	^	٧	Λ	Y	Λ	^	۸	۸	Λ	Λ	۸	^	Λ	V	۸	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	۸	Λ	Λ	A	>	Λ	Λ	۸	Λ	۸	Λ	Λ	A	Λ	>	>
	U	n	U	n	U	U	U	BJ	Ω	Ú	Ú	Ω	Ü	U	J	U	n	Ω	U	J	J	ŭ	U	U	n	J	ĵ	J	-	_	J	U] [J	J	J	J	J	J	7	-
# 10.5 # 10.5 # 10.5	0.003	900.0	0.005	0.007	0.004	0.004	0.005	0.003	800.0	0.005	900.0	900.0	900.0	900.0	900.0	0.005	0.007	800.0	900.0	0.005	900.0	0.008	0.007	0.007	0.008	0.007	0.007	0.005	0.008	9000	900.0	0.009	0.009	0.00	0.010	0.008	900.0	900.0	900.0	9000	800.0
	PCI/IL	PCI/G	PCI/G	PCIAL	_	PCI/G	PCI/G	PCI/L	-	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	_	PCI/G	PCI/G	PCI/G		PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G		PCI/G	PC1/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G		PCI/G
**************************************		0.001	0.002	0.002	0.002	0.002	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005	0.006	9000	1 00.0	0.007	0.007	0.007	0.007	0.007	0.00	0.00	0.009	0.009	0.000	0.00	0.00	┪	0.009	0.009	0.01	0.01	10.0	0.01	0.01	0.01		7	0.012
	O-	0	0.	0.	0.	0.	0.	0.	0	0.	0.	0.0	0.	0.	0.0	0.0	0.0	0.	0.0	0.	0.0	0.	0.0	0.	0.0	0.0	0.0	0	Ö	ö	0.	0.	0	0	0	0	0	0	0	٥	9
XXXXXXXX	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM-241	UM 241	UM 241								
	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM-241	AMERICIUM 241	AMERICIUM 241							
***	TRG /	TRG /	TRG //	TRG //	TRG //	TRG //	TRG	TRG //	TRG /	TRG /	TRG //	REP /	TRG	TRG	TRG	TRG	TRG	REP A	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	TRG	7	TRG	TRG	TRG	TRG	TRG	TRG	TRG /	TRG	\neg		TRG
(10.8.80)	1S	Ψľ.	AL.	S)	AL.	4L	AL.	S	H	A.L.		4L	٩L	4L				√L.	H	Н				Н				\dashv	-	\dashv	Ţ	Н					\dashv		\dashv	+	\dashv
XXXXX	RNS	REAL	REAL	RNS	REAL	REAL	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL
KASAGA AN	25-AUG-94	23-AUG-94	23-AUG-94	22-AUG-94	24-AUG-94	24-AUG-94	22-AUG-94	23-AUG-94	19-AUG-94	22-AUG-94	18-AUG-94	24-AUG-94	24-AUG-94	24-AUG-94	22-AUG-94	24-AUG-94	23-AUG-94	17-AUG-94	17-AUG-94	18-AUG-94	18-AUG-94	22-AUG-94	24-AUG-94	22-AUG-94	24-AUG-94	23-AUG-94	22-AUG-94	24-AUG-94	24-AUG-94	23-AUG-94	18-AUG-94	25-AUG-94	19-AUG-94	24-AUG-94	22-AUG-94	23-AUG-94	22-AUG-94	22-AUG-94	18-AUG-94	23-AUG-94	17-AUG-94
	-	-	Н	\dashv	Н	Н	Н	Н	Н	\vdash	_	\vdash	\dashv		-		Н		Н	Н				Н	Н	Н	Н	\dashv	-	4	-	\dashv	Н	Н	Н	Н	\dashv	Н	\vdash	┪	\dashv
SAMONA	22-JUN-94	30-JUN-94	28-JUN-94	01-JUL-94	30-JUN-94	29-JUN-94	22-JUN-94	27-JUN-94	16-JUN-94	23-JUN-94	16-MAY-94	29-JUN-94	22-JUN-94	29-JUL-94	22-JUN-94	29-JUN-94	28-JUN-94	14-JUN-94	24-MAY-94	01-JUN-94	15-JUN-94	23-JUN-94	23-MAY-94	22-JUN-94	01-JUL-94	01-JUL-94	27-JUN-94	29-JUN-94	29-JUL-94	30-JUN-94	25-MAY-94	29-JUL-94	16-JUN-94	29-JUL-94	14-JUN-94	28-JUN-94	20-JUN-94	27-JUN-94	01-JUN-94	16-JUN-94	01-JUN-94
***	\dashv	\dashv	\dashv	-	Н	Н	_	\dashv	Н		\dashv		\dashv	4	_	Щ			Н	Н		Н			Н	Н	\Box	-	4	4	┥	-			Н	\dashv	\dashv		\dashv	+	\dashv
44.00 E	SS00145EG	SS00159EG	SS00153EG	SS00168EG	SS00157EG	SS00156EG	SS00143EG	SS00166EG	SS00136EG	SS00147EG	SS00094EG	SS00155EG	SS00141EG	SS00146EG	SS00142EG	SS00155EG	SS00152EG	SS00131EG	SS00096EG	SS00102EG	SS00132EG	SS00148EG	SS00091EG	SS00144EG	SS00162EG	SS00160EG	SS00149EG	SS00167EG	SS00164EG	SS00158EG	SS00099EG	SS00165EG	SS00134EG	SS00169EG	SS00131EG	SS00154EG	SS00140EG	SS00151EG	SS00100EG	SS00134EG	SS00104EG
STEE	귀	AF3	-	CM3	AF1	CR1	RR1	4	ES2	\dashv	DRI	-	MW1	IF.	MW2	PP1	DP1	RM3 S	TH2 S	TH3	MRI	Н	DR2 S	RR2	CM3	CM1	PR1	\dashv	-	\dashv	TM3	4	MR3 S	JP2	RM3	DP3	\dashv	PR3	H	_	THI H
	┪	594	\dashv	ᅱ	394	4	\dashv	694	394	\dashv	\dashv	\dashv	\dashv	294					Н	4	Н	Н		Н	\dashv	\dashv	\dashv	\dashv	8	\dashv	\dashv	\dashv	Н	194		Н	\dashv	794	\dashv	+	\dashv
DOCATION	SS108994	SS110594	SS109994	SS110894	SS110394	SS110294	SS109094	SS109694	SS108394	SS109394	SS104394	SS110194	SS108894	SS109294	SS108994	SS110194	SS109894	SS107894	SS104594	SS105194	SS107994	SS109494	SS104194	SS109194	SS110894	SS110694	SS109594	SS110294	SS111094	SS110494	SS104894	SS111194	SS108194	SS111194	SS107894	SS110094	SS108794	SS109794	SS104994	SS108194	SS105294

FALLOUT RADIONUCLIDES: RAW DATA

	900.0	0.02	900.0	0.008	0.008	0.008	0.007	0.005	0.005	0.007	0.005	0.00	0.01	0.007	0.007	0.00	0.01	0.006	0.01	0.01	0.05	0.05	0.05	90.0	0.07	0.08	0.08	0.0	60.0	0.00	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
			Н			L	L			-		L		L	L	L		_	_	L	L	_	_		L		_	L	_	_	L		_	_	L		L	_	_	Ц	
	П					L	L	_	_	-	L		L		-	_	L	L	-		L	_		_	L	_	_		_	_	 	_		_	_		_	L	_	Ы	\dashv
	7	>	>	Λ	Λ	^	>	>	>	>	>	>	>	^	^		>		>	>	^	>	>	>	>	>	>	^	Λ	^	Λ	^	>	>	>	^	>	>	^	>	^
# K (U.)	7	ם		_	1	1	ר	-	_	_		_	_	_	J		L		L	L	ם	٦	n	Þ	Э	Þ	P	ם	Ω	Ω	U	٦	Þ	ם	Ω	P	٦	n	n	n	D
	_	_1		0.00	0.008	0.008	0.008	0.007	0.00	⊢-	0.007		0.00	0.00	0.008	0.010	0.012	0.08	0.010	0.012																					
**************************************	PCI/G	PCI/G	PC1/G	PCI/G																																					
**************************************	0.012	0.013	0.013	0.014	0.014	0.015	0.015	0.015	0.015	0.016	0.017	0.018	0.019	0.019	0.019	0.021	0.023	0.024	0.025	0.031	0.05	0.05	0.05	90.0	0.07	80.0	80.0	60.0	60.0	0.00	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	1	7	4	1)))	0	0	0	0	0	0	0)		_)	_		J								_					\dashv
ALAL MARK	UM-241	UM-241	UM-241	UM-241	JM-241	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34															
	AMERICIUM-241	CESIUM-134																																							
2888	1	7	┪	ヿ	7	7		TRG	TRG A	TRG	TRG AN	TRG A	REP A			TRG CF	REP CE							┪	_	7									\neg	\neg					
888		2		F	F	F	Ē	Ţ	TT	TF	TF	TT	TR	Ĭ.	Ĭ	T,	TR	RE	TRG	TRG	T,	RE	TRG																		
31813 36	REAL	DUP	DUP	REAL	REAL	DUP	REAL	REAL.	REAL	REAL	REAL	REAL.	REAL	REAL	REAL																										
100	18-AUG-94	23-AUG-94	19-AUG-94	25-AUG-94	18-AUG-94	24-AUG-94	19-AUG-94	JG-94	JG-94	JG-94	22-AUG-94	JG-94	17-AUG-94	JG-94	JG-94	JG-94	JG-94	IG-94	IG-94	JG-94	JG-94	JG-94	IG-94	1G-94	1G-94	IG-94	IG-94	IG-94	IG-94	1G-94	IG-94	G-94	IG-94	IG-94	IG-94 1						
888	18-A	23-AI	19-A	25-AI	18-A(24-A	19-AI	22-AUG-94	22-AUG-94	19-AUG-94	22-Al	19-AUG-94	17-A(19-AUG-94	17-AUG-94	16-AUG-94	26-AUG-94	23-AUG-94	17-AUG-94	18-AUG-94	18-AUG-94	17-AUG-94	01-AUG-94	01-AUG-94	01-AUG-94	01-AUG-94	16-AUG-94	03-AUG-94	16-AUG-94	03-AUG-94	01-AUG-94	03-AUG-94	01-AUG-94	01-AUG-94	01-AUG-94	03-AUG-94	01-AUG-94	01-AUG-94	16-AUG-94	01-AUG-94	16-AUG-94
S. 18 1. 18	24-MAY-94	14-JUN-94	27-JUN-94	01-JUL-94	25-MAY-94	14-JUN-94	25-MAY-94	20-JUN-94	16-JUN-94	15-JUN-94	20-JUN-94	01-JUN-94	23-MAY-94	14-JUN-94	16-JUN-94	15-JUN-94	N-94	16-JUN-94	N-94	1Y-94	1194	N-94	1Y-94	1Y-94	1Y-94	24-MAY-94	N-94	N-94	194	N-94	N-94	16-JUN-94	1Y-94	N-94	1Y-94	N-94	N-94	1Y-94	1-94	N-94	N-94
	24-M.	14-JL	27-JL	01-J	25-M,	14-11	25-M.	20-11	16-11	15-31	20-10	01-JL	23-M,	14-JU	16-30	15-30	16-JUN-94	16-JU	14-JUN-94	25-MAY-94	29-JUL-94	29-JUN-94	16-MAY-94	25-MAY-94	25-MAY-94	24-M/	30-JUN-94	16-JUN-94	29-JUL-94	16-JUN-94	01-JUN-94	16-JU	24-MAY-94	14-JUN-94	23-MAY-94	23-JUN-94	14-JUN-94	23-MAY-94	29-JUL-94	14-JUN-94	30-JUN-94
	SS00095EG	SS00127EG	SS00150EG	SS00161EG	SS00097EG	SS00127EG	SS00098EG	SS00138EG	SS00137EG	SS00130EG	SS00139EG	SS00101EG	SS00092EG	SS00128EG	SS00133EG	SS00129EG	SS00135EG	SS00133EG	SS00126EG	SS00093EG	SS00169EG	SS00155EG	SS00094EG	SS00093EG	99EG	95EG	SS00158EG	SS00133EG	64EG	34EG	SS00102EG	SS00137EG	96EG	26EG	92EG	48EG	31EG	91EG	65EG	28EG	59EG
(4.00 kg	SSOO	2800	8800	SS00	SS00	SS001	SS00(SS001	SS001	SS001	\$5001	\$5001	SSOOC	SS001	SS001	28001	SS001	SS001	SS001	SSOOC	SS001	SS001	SS000	28000	SS00099EG	SS00095EG	SS001	SS001	SS00164EG	SS00134EG	SS001	SS001	SS00096EG	SS00126EG	SS00092EG	SS00148EG	SS00131EG	SS00091EG	SS00165EG	SS00128EG	SS00159EG
** 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	H	KM2	PR2	CM2	ĪΜΙ	RM2	TM2	GM1	ES3	BEI	GM2	TMS	DR3	BE3	MR2	BEZ	ESI	MR2	RMI	TM1	172	PP1	DR1	ŢWÏ	TM3	THI	AF2	MR2	뎚	MR3	TH3	ES3	TH2	RM1	DR3	FW2	RM3	DR2	JP2	BE3	AF3
LOCATION	4494	1494	3694	0794	4694	17494	4794	8594	8494	1794	8694	5094	4294	7594	8094	7694	8294	8094	7394	4694	1194	0194	4394	4694	4894	4494	0494	8094	1094	8194	5194	8494	4594	7394	4294	9494	7894	4194	1194	7594	0594
	SS104494	SS10/494	SS109694	SS110794	SS104694	SS107494	SS104794	SS108594	SS108494	SS107794	SS108694	SS105094	SS104294	SS107594	SS108094	SS107694	SS108294	SS108094	SS107394	SS104694	SS111194	SS110194	SS104394	SS104694	SS104894	SS104494	SS110494	SS108094	SS111094	SS108194	SS105194	SS108494	SS104594	SS107394	SS104294	SS109494	SS107894	SS104194	SS111194	SS107594	SS110594

FALLOUT RADIONUCLIDES: RAW DATA

*****	=	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.7	0.7	0.7	0.2	0.2	0.7	0.2	0.2	0.2	0.7	0.2	0.7	0.2	0.2	0.2	0.2	0.3	0.1	0.1	0.1	0.1
	4	4					L	L	L	L	_	_		L				L		L															L	L]
	\downarrow	4				_		L		L	L			L	L	L	L	L												Ц								78	78	78	78
	>	>	>	^	^	^	>	>	>	>	>	>	^	>	>	^	>	>	>	>	^	Λ	۸	^	^	Λ	>	>	Ň	^	۸	Λ	۸	>	>	>	۸	Λ	^	>	>
	Þ	Þ	D	n	n	ດ	Ω	Þ	٥	Э	ב	Э	Ω	٥	٦	U	U	a	٦	Þ	U	U	U	U	Ω	Ω	Э	n	U	n	U	Ω	Ω	ם	Þ	n	U				
***																																						0.11	0.12	0.11	0.1
4 4 M 4 CA 10	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI//G	PC1/G	PCI/G	PCI//G	PCI/G	PCI/G	PCI/G	PCI/G	PCI//G	PCI/G	PCI//G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G	PCI/G														
	0.1	0.1	0.1	0.1	0.1	0.7	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.5	0.2	0.2	0.2	0.2	0.2	0.5	0.2	0.7	0.2	0.7	0.2	0.2	0.2	0.2	0.7	0.7	0.2	0.2	0.2	0.2	0.3	0.3	0.34	0.34	0.46
31.33	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-134	CESIUM-137	CESIUM-137		CESIUM-137
52000	7	┪	\neg						1								Н	-			Ť																		\Box	\neg	7
		TRG	TRG	REP	TRG	REP	TRG	TRG	TRG	REP	TRG	TRG	TRG																												
()(8.8.81)	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	DUP	REAL	REAL.	REAL	REAL	REAL	REAL	REAL	REAL	REAL.	REAL	DUP	REAL						
***	03-AUG-94	16-AUG-94	01-AUG-94	03-AUG-94	03-AUG-94	18-AUG-94	16-AUG-94	01-AUG-94	03-AUG-94	01-AUG-94	03-AUG-94	02-AUG-94	01-AUG-94	03-AUG-94	03-AUG-94	03-AUG-94	01-AUG-94	03-AUG-94	03-AUG-94	03-AUG-94	02-AUG-94	01-AUG-94	16-AUG-94	01-AUG-94	02-AUG-94	03-AUG-94	03-AUG-94	16-AUG-94	03-AUG-94	03-AUG-94	16-AUG-94	01-AUG-94	03-AUG-94	18-AUG-94	03-AUG-94	16-AUG-94	03-AUG-94	03-AUG-94	03-AUG-94	16-AUG-94	16-AUG-94
\$1.8.8.2.1A.8.5.	16-JUN-94	29-JUN-94	15-JUN-94	16-JUN-94	22-JUN-94	29-JUN-94	29-JUL-94	01-JUN-94	16-JUN-94	15-JUN-94	20-JUN-94	25-MAY-94	15-JUN-94	20-JUN-94	22-JUN-94	23-JUN-94	25-MAY-94	20-JUN-94	22-JUN-94	28-JUN-94	14-JUN-94	01-JUN-94	29-JUN-94	14-JUN-94	14-JUN-94	22-JUN-94	28-JUN-94	01-JUL-94	16-JUN-94	27-JUN-94	30-JUN-94	01-JUN-94	28-JUN-94	01-JUL-94	27-JUN-94	01-JUL-94	27-JUN-94	23-JUN-94	22-JUN-94	29-JUN-94	30-JUN-94
***	SS00133EG	SS00156EG	SS00130EG	SS00134EG	SS00142EG	SS00155EG	SS00146EG	SS00100EG	SS00136EG	SS00129EG	SS00139EG	SS00098EG	SS00132EG	SS00138EG	SS00141EG	SS00147EG	SS00097EG	SS00140EG	SS00144EG	SS00152EG	SS00131EG	SS00101EG	SS00167EG	SS00127EG	SS00127EG	SS00143EG	SS00153EG	SS00160EG	SS00135EG	SS00151EG	SS00157EG	SS00104EG	SS00154EG	SS00161EG	SS00149EG	SS00162EG	SS00150EG	SS00147EG	SS00141EG	SS00167EG	SS00159EG
	MK2	<u> </u>	BEI	MR3	MW2	PP1	JP1	TM4	ES2	BE2	GM2	TM2	MR1	GM1	MW1	FW1	TM1	GM3	RR2	DP1	RM3	TMS	CRI	RM2	RM2	RRI	DP2	CM1	ES1	PR3	AF1	THI	DP3	CM2	PR1	СМЗ	PR2	FW1	MW1	CR1	AF3
NO ALLON	32108094	SS110294	SS107794	SS108194	SS108994	SS110194	SS109294	SS104994	SS108394	SS107694	SS108694	SS104794	SS107994	SS108594	SS108894	SS109394	SS104694	SS108794	SS109194	SS109894	SS107894	SS105094	SS110294	SS107494	SS107494	SS109094	SS109994	SS110694	SS108294	SS109794	SS110394	SS105294	SS110094	SS110794	SS109594	SS110894	SS109694	SS109394	SS108894	SS110294	SS110594

FALLOUT RADIONUCLIDES: RAW DATA

	7			T	T	_	_	Γ	Т	Т	Т	Т	Т	1	Т	1	_	Т	т-	_	т-	T	т-	T	_	Γ-		r -	_	1	_		T	ī	_		_				
200	0:0	0.05	0.0	0.12	0.14	0.2	0.2	0.1	0.1	6	6	6	0	0.2	6	0	0.01	0.2	0.2	0.18	0.2	0.13	0.2	0.2	0.15	0.2	0.17	0.1	0.05	0.1	0.17	0.2	0.1	0.1	0.22	0.07	0.2	0.2	0.1	0.19	0.14
		8		8	8										78					78		78			78		78		78		78				78	78				78	78
										L																													78		
	*		≈			78	2	78	78	2	%	82	78	78		78	78	78	%		78		78	78		78		78		78		78	78	18			78	78	30		
:	>	>	>	>	>	>	>	Λ	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	^	Λ	Λ	۸	Λ	Λ	^	۸	Λ	Λ	^	>	Λ	^	Λ	V	>	>
	1	-			Ţ							T	Ī																												٦
2022	51.0	7 2 2	560.0	41.0	9,16	6.T	0.16	0.16	0.092	0.14	0.076	0.20	0.18	0.21	0.14	0.15	0.21	0.18	0.20	0.19	0.18	0.15	0.19	0.17	0.16	0.18	0.17	0.099	0.060	0.10	0.19	0.21	0.092	0.14	0.20	0.073	0.22	0.16	0.094	0.20	0.18
	-	-	-	4	4	4	4	PCI/G	PCI/G 0	PCI/G	PCI/G 0	PCI/G	╄-	Ļ	PCI/G	PCI/G (PCI/G	PCI/G	PCI/G	PCI/G	PCI/G (\dashv	PCI/G 0	Ц	PCI//G		PCI/G 0	PCI/G C	PCI/G 0	PCI/G 0	PCI/G 0	PCI/G 0		_	PCI/G 0						
2222	†	\dagger	T	\dagger	\dagger	†	+	┪	_	-		H	H	H	H	Н		r			Н		Н	H	Н						٦	2	7	PC	PC	7	2	8	8	2	2
, 10 mm	9 5	4.0	0.0	75.0	0.39	0.0	0.61	9.0	0.64	0.71	0.72	0.74	0.75	0.75	0.76	91.0	<i>LL</i> '0	0.78	0.81	0.81	0.81	0.84	0.86	0.86	0.89	0.91	0.94	0.95	0.96	0.98	0.98	-	-	1	1	1.1	1:1	1.1	1:1	1:1	1.2
CEGIIM 127	Chemina 193	CESTUM-137	CESIOM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137	CESIUM-137													
Jak		Z G	Z C	DAT Car	Tag	J KG	TRG	TRG	TRG	REP	TRG	REP	TRG	TRG	REP	TRG	TRG	TRG	TRG	REP	TRG	TRG																			
PEAT	PEAT	DEAL	DEAT	DEAT	DEAT	NEAL	KEAL	REAL	REAL	REAL	DUP	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL	REAL.	REAL	REAL.	REAL	REAL	REAL	REAL	REAL										
03-4116-04	01 ATIG 94	16-AUG-94	01 ATTG 04	01-AUG-94	03 4115 04	*6-DOV-60	03-AUG-94	03-AUG-94	16-AUG-94	16-AUG-94	18-AUG-94	03-AUG-94	16-AUG-94	03-AUG-94	01-AUG-94	18-AUG-94	03-AUG-94	03-AUG-94	16-AUG-94	02-AUG-94	03-AUG-94	01-AUG-94	03-AUG-94	18-AUG-94	01-AUG-94	16-AUG-94	01-AUG-94	16-AUG-94	01-AUG-94	03-AUG-94	02-AUG-94	03-AUG-94	16-AUG-94	03-AUG-94	01-AUG-94	01-AUG-94	03-AUG-94	03-AUG-94	17-AUG-94	01-AUG-94	01-AUG-94
22-111N-94	16 WAV OA	20 NIIN 04	24 MAY 04	15 IIIN 04	22 IIIN 04	PG-NOC-77	22-JUN-94	16-JUN-94	30-JUN-94	30-JUN-94	29-JUL-94	28-JUN-94	01-JUL-94	27-JUN-94	23-MAY-94	01-JUL-94	28-JUN-94	23-JUN-94	01-JUL-94	14-JUN-94	28-JUN-94	01-JUN-94	27-JUN-94	29-JUN-94	14-JUN-94	29-JUL-94	15-JUN-94	29-JUL-94	24-MAY-94	16-JUN-94	14-JUN-94	20-JUN-94	29-JUL-94	16-JUN-94	14-JUN-94	25-MAY-94	20-JUN-94	16-JUN-94	29-JUN-94	01-JUN-94	14-JUN-94
SS109094 RR1 SS00143FG 22-IIIN-94 03-A11C-94	SSOOMOAEG	SS00156FG	SSOOOSEC	SSOO137EG	SSOOIAZEG	030014400	3300144EG	SS00136EG	SS00158EG	SS00157EG	SS00169EG	SS00154EG	SS00160EG	SS00151EG	SS00091EG	SS00161EG	SS00152EG	SS00148EG	SS00162EG	SS00131EG	SS00153EG	SS00102EG	SS00149EG	SS00155EG	SS00131EG	SS00146EG	SS00130EG	SS00165EG	SS00095EG	SS00134EG	SS00127EG	SS00140EG	SS00164EG	SS00134EG	SS00127EG	SS00099EG	SS00139EG	SS00137EG	SS00155EG	SS00104EG	SS00128EG
RR1	28.0	25	TH2	Z Z	MW2	200	3 5	FS7	AF2	AF1	172	DP3	CMI	PR3	DR2	CM2	IM I	FW2	CM3	RM3	DP2	TH3	EX.	E E	RM3	E	BEI	122	E	MR3	RM2	GW3	33	MR3	RM2	TM3	GM2	ES3	Idd :	H	BE3
SS109094	P0104304	\$\$110294	88104894	\$\$107994	SS108994	66100104	33109194	SS108394	SS110494	SS110394	SS111194	SS110094	SS110694	SS109794	SS104194	SS110794	SS109894	SS109494	SS110894	SS107894	SS109994	SS105194	SS109594	SS110194	SS107894	SS109294	SS107794	SS111194	SS104494	SS108194	SS107494	SS108794	SS111094	SS108194	SS107494	SS104894	SS108694	SS108494	SS110194	SS105294	SS107594

FALLOUT RADIONUCLIDES: RAW DATA

(18)	0.2	0.2	0.12	0.4	0.2	0.1	0.2	0.18	0.13	0.17	0.15	0.17	90.0	0.01	0.005	0.00	0.005	10.0	0.004	10.0	0.00	0.00	0.007	0.006	0.005	0.00	900.0	0.009	0.009	0.008	0.01	900.0	9000	0.005	600.0	0.007	900.0	0.007	0.007	0.007	900.0
	+	78	78			┝	-	78	78	78	78	<u> </u>	78	-		F	۲	F		L	٦)						0	0)					H	Н		\dashv
	\dashv	+				-			-			-	Ľ	\vdash	-	_		H						Н	H	-		Н		Н		Н			-				H		\dashv
933	8 /	1		78	78	78	78		┝			-	-				-		30	-						30													H		\dashv
	>	>	Λ	۸	Λ	>	>	۸	^	>	>	>	^	>	>	^	>	۸	<u>ہ</u>	>	^	Λ	۸	Λ	^	2	Λ	^	^	^	Λ	Λ	Λ	Λ	Λ	Λ	۸	۸	>	^	>
10.10	1								-	\vdash	-	H		n	-	1	ŗ		J	_	_	ĵ	J	J	J	_	J	J	J	J	J	J	J	J	ſ	J	J				1
8888	0.22	0.21	0.18	0.21	0.19	0.12	0.18	0.22	0.22	0.22	0.22	0.21	0.075	900.0	0.005	800.0	0.005	0.010	9000	0.011	0.010	0.010	600.0	0.010	800.0	0.00	0.010	0.010	0.010	0.010	0.011	0.008	800.0	9000	0.010	0.010	0.008	800.0	0.009	0.010	0.009
3333	4	_			Щ	П	_	Щ	L	_	L	<u> </u>	_	_	-	_	_	_	-	_	_	_	_	_		-	_	_		_	_	_			_		_	-	ш	-	
3886	2	PCI/G	PCI/L	PCI/G	PCI/G	PCI/G	PCI/IL	PCI/G																																	
8 8 3 C2 8	1.2	4:	1.4	1.4	1.5	1.5	1.5	1.5	1.6	1.6	1.7	1.7	1.8	0.004	0.016	0.017	0.018	0.018	0.019	0.021	0.022	0.022	0.023	0.024	0.024	0.024	0.025	0.025	0.025	0.026	0.026	0.027	0.027	0.027	0.029	0.029	0.029	0.03	0.031	0.031	0.031
#1417/Y	CESIUM-137	PLUTONIUM-239/240																																							
X 2 X 3 X	TRG	TRG	TRG	TRG	TRG	TRG	REP	TRG	TRG	TRG	TRG	TRG	REP	TRG	TRG	TRG	TRG	TRG	TRG	REP	TRG	TRG	RP1	TRG	TRG	TRG	REP	TRG	TRG	TR3	TRG	TRG	RP2	TRG	TRG						
(0.000	REAL	DUP	RNS	DUP	REAL	REAL	RNS	REAL																																	
***	03-AUG-94	01-AUG-94	01-AUG-94	03-AUG-94	03-AUG-94	03-AUG-94	03-AUG-94	01-AUG-94	02-AUG-94	01-AUG-94	01-AUG-94	01-AUG-94	01-AUG-94	19-AUG-94	24-AUG-94	24-AUG-94	24-AUG-94	19-AUG-94	23-AUG-94	17-AUG-94	24-AUG-94	24-AUG-94	23-AUG-94	18-AUG-94	18-AUG-94	22-AUG-94	18-AUG-94	12-AUG-94	28-SEP-94	22-AUG-94	22-AUG-94	23-AUG-94	22-AUG-94	24-AUG-94	16-AUG-94	27-OCT-94	18-AUG-94	23-AUG-94	26-OCT-94	16-AUG-94	17-AUG-94
\$18,878.858 \$18,888.858 \$18,886 \$18,886 \$18,886 \$18,886 \$18,886 \$18,886 \$18,886 \$18,886 \$18,88	27-JUN-94	15-JUN-94	14-JUN-94	16-JUN-94	20-JUN-94	16-JUN-94	16-JUN-94	01-JUN-94	25-MAY-94	25-MAY-94	23-MAY-94	01-JUN-94	25-MAY-94	27-JUN-94	29-JUN-94	30-JUN-94	29-JUN-94	22-JUN-94	16-JUN-94	28-JUN-94	23-JUN-94	01-JUL-94	22-JUN-94	23-MAY-94	24-MAY-94	14-JUN-94	15-JUN-94	16-MAY-94	20-JUN-94	22-JUN-94	16-JUN-94	29-JUL-94	14-JUN-94	30-JUN-94	22-JUN-94	20-JUN-94	23-MAY-94	29-JUL-94	20-JUN-94	27-JUN-94	28-JUN-94
44 (D) XX	SS00130EG	SS00129EG	SS00126EG	SS00135EG	SS00138EG	SS00133EG	SS00133EG	SS00100EG	SS00098EG	SS00097EG	SS00092EG	SS00101EG	SS00093EG	SS00166EG	SS00167EG	SS00159EG	SS00156EG	SS00145EG	SS00134EG	SS00154EG	SS00147EG	SS00162EG	SS00141EG	SS00092EG	SS00096EG	SS00127EG	SS00132EG	SS00094EG	SS00140EG	SS00142EG	SS00136EG	SS00146EG	SS00131EG	SS00158EG	SS00144EG	SS00140EG	SS00091EG	SS00165EG	SS00140EG	SS00149EG	SS00152EG
200	7	BEZ	RM1	ESI	GM1	MR2	MR2	TM4	TM2	TM1	DR3	TMS	TM1	PR2	CR1	AF3	CR1	MW2	MR3	DP3	FW1	CM3	MW1	DR3	TH2	RM2	MR1	DR1	GM3	MW2	ES2	JP1	RM3	AF2	RR2	GM3	DR2	JP2	GM3	PRI	DP1
NO. 2 V - 2 C	55109694	5510/694	SS107394	SS108294	SS108594	SS108094	SS108094	SS104994	SS104794	SS104694	SS104294	SS105094	SS104694	SS109694	SS110294	SS110594	SS110294	SS108994	SS108194	SS110094	SS109394	SS110894	SS108894	SS104294	SS104594	SS107494	SS107994	SS104394	SS108794	SS108994	SS108394	SS109294	SS107894	SS110494	SS109194	SS108794	SS104194	SS111194	SS108794	SS109594	SS109894

FALLOUT RADIONUCLIDES: RAW DATA

0.80	0.007	0.01	0.004	0.01	0.004	0.009	0.01	0.00	0.007	0.005	0.004	0.007	0.006	0.01	0.01	9000	0.01	0.004	0.002	0.005	0.005	0.01	0.004	0.01	0.007	9000	0.008	0.007	0.005	9000	10.0	0.01	0.00	0.01	0.00	0.01	0.00	0.2	0.2	0.3	0.3
			-	L	L	_		_		_		-	_	L	_	L	L	_		_	L	L	20			_	_	_					_	_	_		_		L	_	
			-	-	_	-	L	<u> </u>	-		_		-			_	-	_	-	-	_	H	30 7	H			-					-	-		_	-		\vdash	H		H
	>	Λ	Λ	^	Λ	Λ	>	>	>	>	*	>	Λ	>	Λ	^	>	>	>	>	^	>	<	^	۸	۸	>	Λ	Λ	Λ	Λ	^	>	>	>	>	>	>	>	^	Λ
							r				-		_					-	-	-							-							┝	-		<u> </u>	ם	Ū	U	Û
	0.010	0.014	0.008	0.016	800.0	0.011	0.012	0.011	0.00	0.010	800.0	0.012	0.010	0.012	0.012	0.012	0.015	9000	0.007	0.010	0.011	0.014	0.011	0.016	0.013	0.013	0.015	0.011	0.011	0.013	0.019	0.021	0.015	0.020	0.019	0.017	0.043	0.13	0.14	0.17	0.18
4,656,01	PCI/G 0	PCI/L 0	PCI/G 0	PC1/G 0	PCI/G 0	PC1/G 0.	PCI/G 0	PCI/G 0.	PCI/G 0.	PC1/G 0.	PCI/G 0	PCI/G 0	PCI/G 0.	PCI/G 0	PCI/L 0	PCI/L 0	PCI/G 0	PCI/G 0																							
	┪			Н					H		Н	Н		Н			Н	\vdash	-	\vdash			Н				\vdash	Н	Н	H	\dashv	Н	\vdash	┢	\vdash	H		Н	Н	Н	Н
N 13 X (1) N	0.032	0.033	0.033	0.033	0.034	0.034	0.035	0.035	0.036	0.036	0.037	0.037	0.037	0.038	0.04	0.04	0.041	0.043	0.044	0.044	0.046	0.046	0.047	0.05	0.05	0.052	0.054	0.055	0.055	0.063	0.065	0.067	0.067	0.072	0.075	920'0	0.35	-0.072	-0.068	0.015	0.063
ALKIYNY	PLUTONIUM-239/240	STRONTIUM-89,90	STRONTIUM-89,90	STRONTIUM-89,90	STRONTIUM-89,90																																				
* * * * * * * * * * * * * * * * * * * *	ZZ	TRG	REP	TRG	REP	TRG	TRG	TRG	REP	TRG																															
(118888)	REAL	DUP	REAL	RNS	REAL	REAL	REAL	REAL	REAL	REAL	REAL.	REAL	REAL	REAL	REAL.	REAL	REAL.	REAL	REAL	DUP	REAL	REAL	REAL	REAL	RNS	RNS	REAL	REAL													
***	28-SEP-94	22-AUG-94	25-AUG-94	24-AUG-94	24-AUG-94	12-AUG-94	23-AUG-94	19-AUG-94	23-AUG-94	16-AUG-94	24-AUG-94	18-AUG-94	18-AUG-94	19-AUG-94	24-AUG-94	19-AUG-94	09-AUG-94	24-AUG-94	10-AUG-94	18-AUG-94	16-AUG-94	18-AUG-94	12-AUG-94	09-AUG-94	18-AUG-94	18-AUG-94	19-AUG-94	26-AUG-94	23-AUG-94	17-AUG-94	10-AUG-94	19-AUG-94	18-AUG-94	10-AUG-94	19-AUG-94	18-AUG-94	22-AUG-94	11-AUG-94	11-AUG-94	04-AUG-94	12-AUG-94
38 X (47 X X X X	20-JUN-94	22-JUN-94	01-JUL-94	27-JUN-94	30-JUN-94	01-JUN-94	20-JUN-94	14-JUN-94	29-JUL-94	27-JUN-94	01-JUL-94	25-MAY-94	15-JUN-94	16-JUN-94	29-JUN-94	16-JUN-94	01-JUN-94	29-JUN-94	14-JUN-94	24-MAY-94	23-JUN-94	14-JUN-94	16-JUN-94	15-JUN-94	25-MAY-94	01-JUN-94	16-JUN-94	01-JUL-94	29-JUL-94	28-JUN-94	14-JUN-94	20-JUN-94	25-MAY-94	01-JUN-94	16-JUN-94	25-MAY-94	20-JUN-94	22-JUN-94	27-JUN-94	14-JUN-94	29-JUL-94
CANAL PARTY	SS00140EG	SS00143EG	SS00160EG	SS00151EG	SS00157EG	SS00102EG	SS00139EG	SS00131EG	SS00169EG	SS00150EG	SS00168EG	SS00099EG	SS00130EG	SS00137EG	SS00155EG	SS00134EG	SS00101EG	SS00155EG	SS00127EG	SS00095EG	SS00148EG	SS00128EG	SS00133EG	SS00129EG	SS00098EG	SS00104EG	SS00135EG	SS00161EG	SS00164EG	SS00153EG	SS00126EG	SS00138EG	SS00093EG	SS00100EG	SS00133EG	SS00097EG	SS00140EG	SS00145EG	SS00166EG	SS00127EG	SS00165EG
200	G X 3	E E	CM1	PR3	AF1	TH3	GM2	RM3	172	PR2	CM3	TM3	BEI	ES3	E	MR3	TMS	PP1	RM2	THI	FW2	BE3	MR2	BE2	TM2	E	ES1	CM2	373	DE2	RM1	GM1	TM1	TM4	MR2	ŢWI	GM3	MW2	PR2	RM2	172
NO CANDION	SS108794	SS109094	SS110694	SS109794	SS110394	SS105194	SS108694	SS107894	SS111194	SS109694	SS110894	SS104894	SS107794	SS108494	SS110194	SS108194	SS105094	SS110194	SS107494	SS104494	SS109494	SS107594	SS108094	SS107694	SS104794	SS105294	SS108294	SS110794	SS111094	SS109994	SS107394	SS108594	SS104694	SS104994	SS108094	SS104694	SS108794	SS108994	SS109694	SS107494	SS111194

FALLOUT RADIONUCLIDES: RAW DATA

9993						_	_		_	_	_	_	r	_			r	_	_	_	_	_			,	_	_	_	_					_		-	_				_
	7.0	0.2	0.3	0.3	0.2	0.2	0.1	0.3	0.2	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.3	0.2	0.3	0.3	0.7	0.2	0.5	0.3	0.2	60'0	0.3	0.3	0.3	0.2	0.7	0.1	0.3	0.2	0.3	0.2	0.1	0.3	0.2	0.2	0.2
													Γ				Γ																								7
	1	>	>	Y	۸	Λ	Λ	^	>	>	>	^	>	Λ	^	Λ	>	>	>	^	^	^	۸	Λ	Λ	N	Λ	Λ	Λ	Λ	^	Λ	Λ	Λ	Λ	Λ	Λ.	Λ	Λ	^	^
#	1	Þ	n	U	n	U	î	n	n	n	n	n	n	n	_ f _	J	n	n	n	n	U	J	J	U	J	J	Û	Ū	n	J	J	J	U	J	n	J	l î	n	J	-	
222	9:14 4:14	0.13	0.18	0.19	0.14	0.13	0.13	0.16	0.13	0.18	0.19	0.17	0.17	0.13	0.095	0.12	0.15	0.16	0.18	0.19	0.13	0.15	0.16	0.19	0.15	0.095	0.16	0.17	0.17	0.14	0.14	0.10	0.19	0.15	0.21	0.13	0.11	0.16	0.13	0.15	0.15
	4	PCI//G	PCI/G	PCI/L	PC1/G	PCI/G	ш	PCI/G																																	
	†	┪		0.083	0.094	960.0	0.13	0.14	0.14	-	0.15	0.16	0.18	0.18	0.18	0.18	0.19	0.19	0.19	0.19		0.7	0.2	0.21	0.21	0.22		0.22	Н	0.24	0.24	0.25	0.26	0.26	0.27	0.27	0.27	0.28	0.29		0.32
	7	٦		٥	0	0	Ĺ	L				_	F	_	_		L	Ľ							_					_	_	_			_			_			_
SALA IVNY	S1KON11UM-89,90	STRONTIUM-89,90																																							
200	3	<u> </u>	TRG	REP	TRG	TRG	REP	TRG																																	
	KEAL	REAL	REAL	RNS	REAL	DOP	REAL	DUP	REAL																																
N. S.	04-AUG-94	12-AUG-94	03-AUG-94	12-AUG-94	04-AUG-94	12-AUG-94	11-AUG-94	11-AUG-94	04-AUG-94	10-AUG-94	03-AUG-94	04-AUG-94	03-AUG-94	12-AUG-94	11-AUG-94	11-AUG-94	10-AUG-94	12-AUG-94	03-AUG-94	03-AUG-94	10-AUG-94	10-AUG-94	64-AUG-94	03-AUG-94	11-AUG-94	10-AUG-94	10-AUG-94	11-AUG-94	12-AUG-94	12-AUG-94	03-AUG-94	11-AUG-94	03-AUG-94	12-AUG-94	93-AUG-94	12-AUG-94	10-AUG-94	10-AUG-94	12-AUG-94	11-AUG-94	12-AUG-94
A STATE OF THE STA	01-JUN-94	29-JUL-94	14-JUN-94	01-JUL-94	24-MAY-94	29-JUN-94	22-JUN-94	28-JUN-94	101-10N-94	22-JUN-94	14-JUN-94	24-MAY-94	15-JUN-94	30-JUN-94	28-JUN-94	28-JUN-94	23-JUN-94	29-JUL-94	15-JUN-94	15-JUN-94	20-JUN-94	22-JUN-94	16-MAY-94	14-JUN-94	27-JUN-94	16-JUN-94	23-JUN-94	27-JUN-94	29-JUN-94	29-JUN-94	23-MAY-94	16-JUN-94	14-JUN-94	01-JUL-94	6-NUL-10	01-JUL-94	16-JUN-94	22-JUN-94	30-JUN-94	27-JUN-94	29-JUL-94
8332	3200102EO	SS00146EG	SS00128EG	SS00168EG	SS00096EG	SS00156EG	SS00141EG	SS00152EG	SS00104EG	SS00143EG	SS00126EG	SS00095EG	SS00132EG	SS00159EG	SS00153EG	SS00154EG	SS00148EG	SS00169EG	SS00130EG	SS00129EG	SS00140EG	SS00144EG	SS00094EG	SS00131EG	SS00151EG	SS00134EG	SS00147EG	SS00150EG	SS00155EG	SS00167EG	SS00092EG	SS00134EG	SS00127EG	SS00161EG	SS00101EG	SS00162EG	SS00136EG	SS00142EG	SS00158EG	SS00149EG	SS00164EG
	2		BE3	CM3	TH2	CRI	MWI	DP1	ТНТ	RR1	RM1	TH1	MR1	AF3	DP2	DP3	FW2	Zdí	BE1	BEZ	GM3	RR2	DR1	RM3	PR3	MR3	FW1	PR2	PP1	CR1	DR3	MR3	RM2	CM2	TMS	CM3	ES2	MW2	AF2	PR1	JP3
22	33103194	SS109294	SS107594	SS110894	SS104594	SS110294	SS108894	SS109894	SS105294	SS109094	SS107394	SS104494	SS107994	SS110594	SS109994	SS110094	SS109494	SS111194	SS107794	SS107694	SS108794	SS109194	SS104394	SS107894	SS109794	SS108194	SS109394	SS109694	SS110194	SS110294	SS104294	SS108194	SS107494	SS110794	SS105094	SS110894	SS108394	SS108994	SS110494	SS109594	SS111094

FALLOUT RADIONUCLIDES: RAW DATA

		_																	
8 (42) 8 8	0.2	6	0.2	0.2	6	6	0.3	0.4	0.4	0.2	9	0.3	0.1	0	03	0.3	0.2	0.2	0.3
% ***									l	l									
						Γ	Γ					Γ	Γ					Γ	
				Γ	Ī	T	Γ						Ī			Γ		Γ	ſ
	^	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
	_	-	ī	-	,	-	-	-	-	-	5	-	-	-	-	-	þ	n	-
	0.15	0.13	0.14	0.16	0.16	0.15	0.22	0.25	0.25	0.15	0.12	0.19	0.12	0.13	0.22	0.20	0.063	0.071	0.13
STATE STATE OF THE	PCI/G	PCIVG	PCI/G	PCI//G	PCI/G	PCI/G	PCI/G	PCI/G	PCIAL	PCI/L	PCI/L								
N. N. S.	0.33	0.33	0.36	0.36	0.37	0.38	0.39	0.41	0.41	0.45	0.47	0.48	0.48	0.59	19.0	19.0	-0.014	0.02	0.71
ALATENY	STRONTIUM-89,90	TOTAL RADIOCESIUM	TOTAL RADIOCESIUM	TOTAL RADIOCESIUM															
	TRG	REP	TRG	TRG	TRG	TRG	REP	TRG	TRG	TRG	TRG	TRG	TRG						
	REAL	DUP	RNS	RNS	RNS														
K38.08.08.08	04-AUG-94	12-AUG-94	12-AUG-94	12-AUG-94	04-AUG-94	10-AUG-94	04-AUG-94	04-AUG-94	10-AUG-94	10-AUG-94	10-AUG-94	03-AUG-94	11-AUG-94	10-AUG-94	03-AUG-94	04-AUG-94	11-AUG-94	11-AUG-94	10-AUG-94
\$100 KEEP SEE	25-MAY-94	29-JUN-94	30-JUN-94	01-JUL-94	23-MAY-94	20-JUN-94	25-MAY-94	14-JUN-94	16-JUN-94	20-JUN-94	16-JUN-94	01-JUN-94	16-JUN-94	16-JUN-94	25-MAY-94	25-MAY-94	27-JUN-94	22-JUN-94	01-JUL-94
CONTOR STE BARBER CONFOUR CARAGE	SS00099EG	SS00155EG	SS00157EG	SS00160EG	SS00091EG	SS00139EG	SS00098EG	SS00131EG	SS00133EG	SS00138EG	SS00137EG	SS00100EG	SS00133EG	SS00135EG	SS00097EG	SS00093EG	SS00166EG	SS00145EG	SS00168EG
X 3 4 5 X	TM3	PP1	AF1	CM1	DR2	GM2	TM2	RM3	MR2	GM1	ES3	TM4	MR2	ES1	TM1	TM1	PR2	MW2	CM3
LOCATION	SS104894	SS110194	SS110394	SS110694	SS104194	SS108694	SS104794	SS107894	SS108094	SS108594	SS108494	SS104994	SS108094	SS108294	SS104694	SS104694	SS109694	SS108994	SS110894

APPENDIX C - DATA QUALITY ASSESSMENT

This appendix is a supplement to, and was performed in conjunction with, the Rocky Flats Plant Site-Wide Quality Assurance Project Plan for CERCLA Remedial Investigation/Feasibility Studies and RCRA Facility Investigations/Corrective Measures Studies Activities (QAPjP)(EG&G, 1990). The analytical results were evaluated using the criteria specified in Evaluation of ERM Data for Usability in Final Reports, 2-G32-ER-ADM-08.02 (EG&G, 1994b). This appendix is also organized according to Section 5.0 of the 2-G32-ER-ADM-08.02 document (EG&G, 1994b).

C.1 DATA VALIDATION

Validation activities consist of reviewing and verifying field and laboratory data and evaluating these verified data for data quality (i.e., comparison of reduced data to DQOs, where appropriate). The field and laboratory data validation and guidelines are described and referenced in Section 3.0 of the QAPjP. The process for validating the quality of the data is illustrated graphically in Figure 3-1 of the QAPjP, and is also included as part of the sample-collection, chain-of-custody, and analysis process illustrated in Figure 8-1 of the QAPjP. The criteria for determining the validity of ER data at RFETS are described in Section 3.7 of the QAPjP.

The acceptance and review criteria for the following validation standards are specified in the GRRASP. The process for evaluating whether the criteria have been met is described in the documents on the functional guidelines for validation (EG&G, 1990; EG&G, 1994b). The following three levels of data validity have been established for the ER activities at RFETS:

- 1. Valid data meet the following seven, objective standards (Validation Code = V):
 - Proper analytical methods followed
 - Sufficient number and type of QC samples analyzed
 - Acceptance criteria for QC samples achieved
 - Detection limits achieved
 - Compounds and analytes correctly identified
 - Equipment/instrument-calibration criteria achieved
 - Sample holding times met.
- 2. Acceptable data (with qualifications) meet most, but not all, objective standards. All primary validation criteria (i.e., calibration, method requirements, compound and analyte identification) are achieved within acceptable limits (Validation Code = A).
- 3. Rejected data do not meet objective standards or primary validation criteria (Validation Code = R).

C.2 DATA REPORTING

Depending on the outcome of the data-validation process or the status of data validation, each datum is coded according to the definitions in Table 7-2 of the QAPjP. The results of the data validation were reported in ER Department Data Assessment Summary reports. The usability of data (usability criteria are described in Section 3.7 of the QAPjP) was addressed by applying the following protocol:

Data are usable for all purposes if all of the following criteria are met:

- Data quality is classified as valid.
- All DQOs are achieved.
- All specific agreements and/or regulatory requirements are met.

Data are considered usable for some purposes if any of the following conditions occur:

- Data quality is classified as valid or acceptable with qualifications. (Rejected data may be usable for limited purposes such as screening.)
- Not all DOOs are achieved.
- All specific program requirements are not met.

Data may be unusable if:

- Data quality is classified as rejected.
- DQOs are not achieved.
- Specific program requirements are not met.

With the exception of thallium, all data were considered usable for Phase I of the BSCP.

C.3 PRECISION, ACCURACY, REPRESENTATIVENESS, COMPLETENESS, AND COMPARABILITY PARAMETERS

Data quality is typically measured in terms of precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters. Precision, accuracy, and completeness are quantitative measures of data quality, whereas representativeness and comparability are qualitative statements that express the degree to which sample data represent actual conditions and describe the confidence of the relationship of one data set to another. These parameters are defined in Appendix B of the QAPjP and are summarized as follows.

C.3.1 Precision

Precision is a measure of the reproducibility of analytical results. Precision is expressed quantitatively by the RPD between duplicate field samples. Precision is a laboratory quality assurance/quality control (QA/QC) parameter and was met by complying with protocol established for laboratories in GRRASP. Precision objectives (i.e., calculated RPD values) for the analytes listed in Table C-1 are as prescribed in GRRASP. To be acceptable, field duplicate soil samples, which are collected and analyzed to provide an indication of overall sampling and

analytical precision, must agree within a 40-percent RPD for the target sample. The RPD is calculated as follows:

$$RPD = 100*(C1 - C2)/[(C1 + C2)/2]$$

where:

RPD = Relative percent difference

C1 = Concentration of analyte in the sample C2 = Concentration of analyte in the duplicate

Only two analytes, americium-241 and radium-226, had RPD values greater than 40 percent. All other radionuclides and non-radionuclides had RPD values \leq 40 percent. Tables C-2 and C-3 present the calculated RPDs and the summary of RPDs, respectively.

C.3.2 Accuracy

Accuracy is a measure of how closely an analytical result corresponds to the "true" concentration in a sample. Tests for accuracy measure the bias or source of error in a group of measurements; bias is an indication of the systematic error within an analytical technique. It is expressed quantitatively by the percent recovery (%R) obtained from spiked samples, defined as:

$$%R = [(SSR - SR)/SA] * 100$$

where

SSR = spiked sample result

SR = sample result

SA = spike added

There were no results for spiked samples reported in the RFEDS data for the BSCP. Comparison with known standards can also be used to check for analytical or instrumental bias in analyses. Table C-4 presents the CRDLs and IDLs.

C.3.3 Representativeness

Representativeness is a qualitative measure of how well the data meet the project goal of representing the concentrations or activities of analytes in the target population. It expresses the degree to which sample data accurately and precisely represents the characteristics of a particular site or population, parameter variations at a sampling point, or an environmental condition.

Representativeness is also a qualitative parameter related to the proper design of the sampling and analysis program. For the BSCP study, selection of sample locations was designed to represent environmental conditions applicable to each analyte group. The required number of samples, according to the sampling plan, was compared to the actual number of samples

C-3

collected. The results of these comparisons are presented in Table C-5; these results indicate that there were no sampling deviations for the BSCP study.

C.3.4 Completeness

Completeness is defined as the percentage of measurements that are judged to be valid. The target completeness for both field sampling and analytical data for the BSCP was 90 percent. The attainment of the completeness objective for Phase I of the BSCP was determined using the following calculation for all data types:

Completeness =
$$DP_u = [(DP_t - DP_n)/DP_t] \times 100$$

where:

 DP_u = Percentage of usable data points

 $DP_t = Total$ number of data points

 $DP_n = Nonusable data points$

All data points were determined to be usable (i.e., completeness of 100 percent), except data points for thallium, which had a completeness of 70 percent.

C.3.5 Comparability

Comparability is a qualitative parameter that expresses the confidence with which two data sets may be compared. Comparability of BSCP data with data collected for OUs at RFETS was attained by utilizing the same soil-sampling method (the RF sampling method) and using similar analytical methods (except for antimony analyses) as those used by the OUs.

For the BSCP data, studies that have sampled soil to depths of 5 cm have comparable data, but comparability with studies that sampled to lesser or greater depths is less certain. Additionally, laboratory analyses for most historic plutonium studies, as well as for many regional studies, used the leaching method rather than the complete-dissolution method that has been used at RFETS since 1990. Use of the leaching method in some other studies introduces additional uncertainty into the comparison with data from the BSCP.

C.4 EQUIPMENT DECONTAMINATION

Non-dedicated sampling equipment (i.e., sampling equipment that is used at more than one location) was decontaminated between sampling locations in accordance with EMD 5-21000-OPS FO.3, General Equipment Decontamination (EG&G, 1995c). Equipment rinsate blanks, which were collected and analyzed to detect cross-contamination of samples from inadequate equipment decontamination, are considered acceptable (with no need for data qualification) if the concentration of analytes of interest is less than five times the required detection limit (i.e., the CRDL) for each analyte, as specified in Table C-4.

The effectiveness of equipment decontamination was tested by analyzing the final rinse solution for each analyte for 20 percent of the samples collected. No contaminants were detected in the rinse water. Results for the rinsate blanks did not indicate a contamination problem; therefore, field blanks were not analyzed.

C.5 LABORATORY CONTAMINATION IN SAMPLES

Laboratory QC techniques to ensure consistency and validity of analytical results (including detecting potential laboratory contamination of samples) consisted of using reagent blanks, internal standard reference materials, laboratory replicate analyses, and field duplicates. The laboratory analysis contractor followed the standard evaluation guidelines and QC procedures, including frequency of QC checks, that are applicable to the analytical method used as specified in Parts A and B of the GRRASP and Section 3.0 of the QAPjP. As noted above, field blanks were not analyzed, because field rinsate blanks indicated a lack of field-derived contaminants.

The following criteria were used to determine if the potential chemical of concern was a laboratory contaminant or field contaminant in the real sample:

- If a detected organic analyte is a common laboratory contaminant (methylene chloride, acetone, 2-butanone, or phthalate) and the real concentration is less than 10 times the blank concentration, the potential contaminant is considered a laboratory contaminant (i.e., not detected) in the real sample and the qualifier is changed from "B" to "U".
- If a detected organic analyte is a common laboratory contaminant and the real concentration is greater than or equal to 10 times the blank concentration, the organic analyte in the real sample is considered a true detect and the "B" qualifier is dropped.
- If a detected organic analyte is not a common laboratory contaminant and the real concentration is less than 5 times the blank concentration, the potential contaminant is considered a laboratory contaminant (i.e., not detected) in the real sample and the qualifier is changed from a "B" to a "U".
- If a detected organic analyte is a not common laboratory contaminant and the real concentration is greater than or equal to 5 times the blank concentration, the analyte in the real sample is considered a true detect and the "B" qualifier is dropped.
- If the source of detected contamination from real or QC samples is inconclusive, compare lot numbers of sampling containers used for real samples with analytical results for the same lots of sample containers produced by the laboratory. This process should allow one to determine if the sample containers are the source of contamination.

Table C-1

MATRIX TYPE AND ANALYTICAL SUITES

Matrix Type	Analytical Suites
Surface soil	Semi-Volatile Organic Compounds Pesticides and PCBs Metals Radionuclides Chemical Parameters/Physical Properties

Table C-2

CALCULATED RPD VALUES FOR FIELD DUPLICATE SAMPLES

QC Sample ID	Media	Detected Analyte	Associated Real Sample ID	QC Sample Result	Real Sample Result	Units	RPD Value
Metals							
\$\$00103EG	Soil	Aluminum	SS00125EG	16100	12700	mg/kg	23.6%
SS00103EG	Soil	Arsenic	SS00125EG	6.8	6.1	mg/kg	10.9%
\$\$00103EG	Soil	Barium	SS00125EG	106	97.2	mg/kg	8.7%
SS00103EG	Soil	Beryllium	SS00125EG	0.87	0.81	mg/kg	7.1%
\$\$00103EG	Soil	Calcium	\$\$00125EG	2980	2810	mg/kg	5.9%
SS00103EG	Soil	Chromium	SS00125EG	16.6	13.3	mg/kg	22.1%
SS00103EG	Soil	Cobalt	\$\$00125EG	10.2	8.8	mg/kg	14.7%
SS00103EG	Soil	Copper	SS00125EG	15.7	16	mg/kg	1.9%
SS00103EG	Soil	Iron	SS00125EG	20900	15300	mg/kg	30.9%
SS00103EG	Soil	Lead	SS00125EG	32.3	30.1	mg/kg	7.1%
\$\$00103EG	Soil	Lithium	SS00125EG	10.7	8.6	mg/kg	21.8%
SS00103EG	Soil	Magnesium	SS00125EG	2480	2140	mg/kg	14.7%
SS00103EG	Soil	Manganese	SS00125EG	298	271	mg/kg	9.5%
\$\$00103EG	Soil	Nickel	SS00125EG	14	12.8	mg/kg	9.0%
SS00103EG	Soil	Potassium	SS00125EG	2650	2150	mg/kg	20.8%
\$\$00103EG	Soil	Silicon	SS00125EG	1480	1360	mg/kg	8.5%
\$\$00103EG	Soil	Sodium	SS00125EG	62.6	79.7	mg/kg	24.0%
SS00103EG	Soil	Strontium	SS00125EG	35.4	32.3	mg/kg	9.2%
SS00103EG	Soil	Vanadium	SS00125EG	41.7	35.6	mg/kg	15.8%
SS00103EG	Soil	Zinc	SS00125EG	57.6	59.9	mg/kg	3.9%
Radionuclides							
SS00103EG	Soil	Cesium-137	SS00125EG	0.89	0.77	pCi/g	14.5%
\$\$00103EG	Soil	Radium-226	SS00125EG	0.52	0.87	pCi/g	50.4%
SS00103EG	Soil	Radium-228	SS00125EG	0.98	1.3	pCi/g	28.1%
\$\$00103EG	Soil	Uranium-233/234	SS00125EG	0.81	0.81	pCi/g	0.0%
SS00103EG	Soil	Uranium-235	SS00125EG	0.035	0.033	pCi/g	5.9%
SS00103EG	Soil	Uranium-238	SS00125EG	0.84	0.83	pCi/g	1.2%
SS00167EG	Soil	Cesium-137	SS00156EG	0.34	0.51	pCi/g	40.0%

Table C-2. (continued).

QC Sample ID	Media	Detected Analyte	Associated Real Sample ID	QC Sample Result	Real Sample Result	Units	RPD Value
Radionuclides (continued).							
SS00167EG	Soil	Plutonium-239/240	SS00156EG	0.016	0.018	pCi/g	11.8%
SS00169EG	Soil	Cesium-137	SS00165EG	0.72	0.95	pCi/g	27.5%
SS00169EG	Soil	Plutonium-239/240	SS00165EG	0.036	0.03	pCi/g	18.2%
SS00093EG	Soil	Americium-241	SS00097EG	0.031	0.014	pCi/g	75.6%
SS00093EG	Soil	Cesium-137	SS00097EG	1.8	1.6	pCi/g	11.8%
SS00093EG	Soil	Plutonium-239/240	SS00097EG	0.067	0.076	pCi/g	12.6%
SS00093EG	Soil	Strontium-89/90	SS00097EG	0.67	0.61	pCi/g	9.4%
Chemical Par	ameters/Ph	ysical Properties				-	
SS00103EG	Soil	Nitrate/Nitrite	\$\$00125EG	8	7	mg/kg	13.3%
SS00103EG	Soil	Oil and Grease	SS00125EG	81	88	mg/kg	8.3%
SS00103EG	Soil	Total Organic Carbon	SS00125EG	16800	16700	mg/kg	0.6%
SS00093EG	Soil	Total Organic Carbon	SS00097EG	4.3%	4.4%	%	2.3%
SS00103EG	Soil	pН	SS00125EG	5.9	6.1	pH units	3.3%
\$\$00103EG	Soil	Specific Conductivity	SS00125EG	0.14	0.13	mmhos/cm	7.4%

Table C-3
SUMMARY OF RPDs

Analyte	Media	Required RPD Value	Total Duplicates Collected	Number of Duplicates within the RPD	Overall Precision Compliance
Metals					
Aluminum	Soil	≤ 40%	1	1	100%
Arsenic	Soil	≤ 40%	1	1	100%
Barium	Soil	≤ 40%	1	1	100%
Beryllium	Soil	≤ 40%	1	1	100%
Calcium	Soil	≤ 40%	1	1	100%
Chromium	Soil	≤ 40%	1	1	100%
Cobalt	Soil	≤ 40%	1	1	100%
Copper	Soil	≤ 40%	1	1	100%
Iron	Soil	≤ 40%	1	1	100%
Lead	Soil	≤ 40%	1	1	100%
Lithium	Soil	≤ 40%	1	1	100%
Magnesium	Soil	≤ 40%	1	1	100%
Manganese	Soil	≤ 40%	1	1	100%
Nickel	Soil	≤ 40%	1	1	100%
Potassium	Soil	≤ 40%	1	1	100%
Silicon	Soil	≤ 40%	1	1	100%
Sodium	Soil	≤ 40%	1	1	100%
Strontium	Soil	≤ 40%	1	1	100%
Vanadium	Soil	≤ 40%	1	1	100%
Zinc	Soil	≤ 40%	1	1	100%
Radionuclides					
Americium-241	Soil	≤ 40%	1	0	0%
Cesium-137	Soil	≤ 40%	4	4	100%
Plutonium-239/240	Soil	≤ 40%	3	3	100%
Radium-226	Soil	≤ 40%	1	0	0%
Radium-228	Soil	≤ 40%	1	1	100%
Strontium-89/90	Soil	≤ 40%	1	1	100%
Uranium-233/234	Soil	≤ 40%	1	1	100%
Uranium-235	Soil	≤ 40%	1	1	100%

Table C-3. (continued).

Analyte	Media	Required RPD Value	Total Duplicates Collected	Number of Duplicates within the RPD	Overall Precision Compliance	
Uranium-238	Soil	≤ 40%	1	1	100%	
Chemical Parameters/Physical Properties						
Nitrate/Nitrite	Soil	≤ 40%	1	1	100%	
Oil and Grease	Soil	≤ 40%	1	1	100%	
Total Organic Carbon	Soil	≤ 40%	2	2	100%	
pН	Soil	≤ 40%	1	1	100%	
Specific Conductivity	Soil	≤ 40%	1	1	100%	

ANALYTICAL METHODS AND DETECTION LIMITS FOR BSCP SOIL AND SOIL PROFILE SAMPLES

Table C-4

Analyte	Method	Required Detection Limits (from BSCP)	Actual IDLs	Actual CRDLs
Target Analyte List-Metals (all un	nits in mg/kg)			L
Aluminum	Table 42ª	40		40
Antimony	Table 42ª	0.4	0.38-2.0	12
Arsenic (GFAA)	Table 42ª	2.0		2.0
Barium	Table 42ª	40		40
Beryllium	Table 42 ^a	1.0	_	1.0
Cadmium	Table 42 ^a	1.0	0.59-0.67	1.0
Calcium	Table 42 ^a	2000	_	1000
Cesium	Table 43*	200	12.1-63	200
Chromium	Table 42 ^a	2.0		2.0
Cobalt	Table 42 ^a	10		10
Copper	Table 42 ^a	5.0		5.0
Iron	Table 42*	20	_	20
Lead (GFAA)	Table 42°	1.0	_	0.6
Lithium	Table 43°	20		20
Magnesium	Table 42ª	2000	_	1000
Manganese	Table 42*	3.0	_	3.0
Mercury (CVAA)	Table 42*	0.2	0.08-0.2	0.1
Molybdenum	Table 43ª	40	0.58-1.8	40
Nickel	Table 42*	8.0	_	8.0
Potassium	Table 42ª	2000	<u> </u>	1000
Selenium (GFAA)	Table 42ª	1.0	0.58-1.0	1.0
Silver	Table 42ª	2.0	_	2.0
Sodium	Table 42 ^a	2000	_	1000
Strontium	Table 43 ^a	40	_	40
Thallium (GFAA)	Table 42 ^a	2.0	0.77-0.89	2.0
Tin	Table 43*	40	2.7-10	40
Vanadium	Table 42 ^a	10	_	10
Zinc	Table 42*	4.0		4.0
Target Compound List-Semivolati	iles (all units in μg/kg)			
1,2,4-Trichlorobenzene	Table 13 ^b	330	670-760	330
1,2-Dichlorobenzene	Table 13 ^b	330	670-760	330
1,3-Dichlorobenzene	Table 13 ^b	330	670-760	330
1,4-Dichlorobenzene	Table 13 ^b	330	670-760	330
2,4,5-Trichlorophenol	Table 13 ^b	1600	3300-3800	1600
2,4,6-Trichlorophenol	Table 13b	330	670-760	330
2,4-Dichlorophenol	Table 13 ^b	330	670-760	330
2,4-Dimethylphenol	Table 13b	330	670-760	330
2,4-Dinitrophenol	Table 13 ^b	1600	3300-3800	1600
2,4-Dinitrotoluene	Table 13 ^b	330	670-760	330

Table C-4. (continued).

Analyte	Method	Required Detection Limits (from BSCP)	Actual IDLs	Actual CRDLs
2,6-Dinitrotoluene	Table 13b	330	670-760	330
2-Chloronaphthalene	Table 13 ^b	330	670-760	330
2-Chlorophenol	Table 13 ^b	330	670-760	330
2-Methylnapthalene	Table 13b	330	670-760	330
2-Methylphenol	Table 13 ^b	330	670-760	330
2-Nitroanaline	Table 13 ^b	1600	3300-3800	1600
2-Nitrophenol	Table 13b	330	670-760	330
3,3'-Dichlorobenzidine	Table 13 ^b	660	1300-1500	660
3-Nitroanaline	Table 13b	1600	3300-3800	1600
4,6-Dinitro-2-methylphenol	Table 13b	1600	3300-3800	1600
4-Bromophenyl phenyl ether	Table 13b	330	670-760	330
4-Chloro-3-methylphenol	Table 13b	330	670-760	330
4-Chloroanaline	Table 13b	330	670-760	330
4-Chlorophenol phenyl ether	Table 13b	330	670-760	330
4-Methylphenol	Table 13 ^b	330	670-760	330
4-Nitroanaline	Table 13b	1600	3300-3800	1600
4-Nitrophenol	Table 13 ^b	1600	3300-3800	1600
Acenaphthene	Table 13b	330	670-760	330
Acenaphthylene	Table 13 ^b	330	670-760	330
Anthracene	Table 13 ^b	330	670-760	330
Benzo(a)anthracene	Table 13 ^b	330	670-760	330
Benzo(a)pyrene	Table 13b	330	670-760	330
Benzo(b)fluoranthene	Table 13 ^b	330	670-760	330
Benzo(g,h,i)perylene	Table 13 ^b	330	670-760	330
Benzo(k)fluoranthene	Table 13 ^b	330	670-760	330
Benzoic acid	Table 13 ^b	1600	3300-3800	1600
Benzyl alcohol	Table 13b	330	670-760	330
bis(2-chloroethoxy)methane	Table 13 ^b	330	670-760	330
bis(2-chloroethyl)ether	Table 13 ^b	330	670-760	330
bis(2-chloroisopropyl)ether	Table 13 ^b	330	670-760	330
bis(2-ethylhexyl)phthalate	Table 13 ^b	330	670-760	330
Butyl benzylphthalate	Table 13 ^b	330	670-760	330
Chrysene	Table 13 ^b	330	670-760	330
Di-n-butylphthalate	Table 13b	330	670-760	330
Di-n-octyl phthalate	Table 13 ^b	330	670-760	330
Dibenz(a,h)anthracene	Table 13b	330	670-760	330
Dibenzofuran	Table 13 ^b	330	670-760	330
Diethylphthalate	Table 13 ^b	330	670-760	330
Dimethylphthalate	Table 13 ^b	330	670-760	330
Fluoranthene	Table 13 ^b	330	670-760	330
Fluorene	Table 13 ^b	330	670-760	330
Hexachlorobenzene	Table 13b	330	670-760	330

Table C-4. (continued).

Analyte	Method	Required Detection Limits (from BSCP)	Actual IDLs	Actual CRDLs
Hexachlorobutadiene	Table 13 ^b	330	670-760	330
Hexachlorocyclopentadiene	Table 13b	330	670-760	330
Hexachloroethane	Table 13b	330	670-760	330
Indeno(1,2,3-cd)pyrene	Table 13 ^b	330	670-760	330
Isophorone	Table 13 ^b	330	670-760	330
n-Nitroso-diphenylamine	Table 13b	330	670-760	330
n-Nitroso-dipropylamine	Table 13b	330	670-760	330
Naphthalene	Table 13 ^b	330	670-760	330
Nitrobenzene	Table 13 ^b	330	670-760	330
Pentachlorophenol	Table 13b	1600	3300-3800	1600
Phenanthrene	Table 13 ^b	330	670-760	330
Phenol	Table 13b	330	670-760	330
Pyrene	Table 13 ^b	330	670-760	330
Target Compound List - Pesticid	es/PCBs (all units in µg/kg)			
4,4'-DDD	Table 23 ^b	16	32-37	
4,4'-DDE	Table 23b	16	32-37	
4,4'-DDT	Table 23b	16	32-37	
Aldrin	Table 23b	8.0	16-18	
AROCLOR-1016	Table 23b	80	160-180	
AROCLOR-1221	Table 23b	80	160-180	
AROCLOR-1232	Table 23b	80	160-180	_
AROCLOR-1242	Table 23 ^b	80	160-180	_
AROCLOR-1248	Table 23b	80	160-180	_
AROCLOR-1254	Table 23 ^b	160	320-370	_
AROCLOR-1260	Table 23b	160	320-370	_
alpha-BHC	Table 23b	8.0	16-18	_
beta-BHC	Table 23 ^b	8.0	16-18	_
delta-BHC	Table 23b	8.0	16-18	_
gamma-BHC (Lindane)	Table 23 ^b	8.0	16-18	_
alpha-Chlordane	Table 23b	80	160-180	_
gamma-Chlordane	Table 23 ^b	80	160-180	
Dieldrin	Table 23 ^b	16	32-37	
Endosulfan I	Table 23 ⁶	8.0	16-18	
Endosulfan II	Table 23 ^b	16	32-37	_
Endosulfan Sulfate	Table 23 ^b	16	32-37	
Endrin	Table 23 ^b	16	32-37	
Heptachlor	Table 23 ^b	8.0	16-18	_
Heptachlor epoxide	Table 23 ^b	8.0	16-18	_
Methyloxychlor	Table 23 ^b	80	160-180	_
Toxephene	Table 23 ^b	160	320-370	
Other Chemical Parameters/Phys	sical Properties ³ (units specified)			
Ammonium	EPA 350 Series ^d	0.05 ppm	1.0	1.0
Carbonate	EPA 310.1d	10 ppm	10-11	10

Table C-4. (continued).

Analyte	Method	Required Detection Limits (from BSCP)	Actual IDLs	Actual CRDLs
Nitrate/Nitrite as N	EPA 353.1 or 353.2 ^d	0.1 ppm	_	2.0
Oil & Grease	EPA 412.1 ^d or 413.2	5 ppm	-	17
Soil pH	EPA 9045°	0.1 pH units	-	0.1
Specific Conductance	EPA 120.1 ^d	1 μs		.002
Total Organic Carbon	EPA 415.1d or ASTM D4129-82	1 ppm		.05-220
Fallout and Naturally Occurring F	Radionuclides ¹ (all units in pCi/g)			
Americium-241	e,f,g,h,i,j,k,l	0.02	.001013	.00402
Cesium-137	e,f,g,h,i,l	0.1		.0731
Plutonium-239/240	e,f,g,h,i,j,k,l	0.02	_	.00201
Radium-226	e,f,g,h,i,l	0.5	0.1	0.1-0.35
Radium-228	e,f,g,h,i,l	0.5	0.2	0.2-0.75
Strontium-89/90	e,f,g,h,i,l	1	.015-0.28	.09-0.4
Uranium-233/234	e,f,g,h,i,l	0.3		.00702
Uranium-235	e,f,g,h,i,l	0.15	_	.003009
Uranium-238	e,f,g,h,i,l	0.3		.00601

IDLs were only available for non-detected results.

- Radiochemistry is performance based per GRRASP. The procedures used by the laboratory must be derived from one (or more) of the referenced methods.
- Methods modified to accommodate soil matrix; detection limits may vary.
- Physical properties testing will be conducted by Iowa State University and will be consistent with previous investigations by Litaor (1993b).
- Per GRRASP: U.S. EPA Contract Laboratory Program Statement of Work for Inorganics Analysis, Multi-Media, Multi-Concentration, 7/88 (or latest revision).
- Per GRRASP: U.S. EPA Contract Laboratory Program Statement of Work for Inorganics Analysis, Multi-Media, Multi-Concentration, 2/88 (or latest revision).
- Methods are from "Test Methods for Evaluation of Solid Waste, Physical/Chemical Methods," (SW-846, 3rd Ed.) U.S. Environmental Protection Agency.
- Methods for Chemical Analysis of Water and Wastes, EPA- 600/4-79-02, March 1983.
- U.S. Environmental Protection Agency, 1979, Radiochemical Analytical Procedures for Analysis of Environmental Samples, Report No. EMSL-LY-0539-1, Las Vegas, NV, U.S. Environmental Protection Agency.
- U.S. Environmental Protection Agency, 1976. Interim Radiochemical Methodology for Drinking Water, Report No. EPA-600/4-75-008. Cincinnati U.S. Environmental Protection Agency.
- Harley, J.H., ed., 1975, ASL Procedures Manual, HASL-300; Washington, D.C., U.S. Energy Research and Development
- h "Prescribed Procedures for Measurement of Radioactiveity in Drinking Water," EPA-600/4-80-032, August 1980, Environmental Monitoring and Support Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268.
- "Methods for Determination of Radioactive Substances in Water and Fluvial Sediments," U.S.G.S. Book 5, Chapter A5,
- "Acid Dissolution Method for the Analysis of Plutonium in Soil," EPA-600/7-79/081, March 1979, U.S. EPA Environmental Monitoring and Support Laboratory, Las Vegas, Nevada, 1979.
- "Procedures for the Isolation of Alpha Spectrometrically Pure Plutonium, Uranium, and Americium," by E.H. Essington and B.J. Drennon, Los Alamos National Laboratory, a private communication.
- U.S. EPA, 1987. "Eastern Environmental Radiation Facility Radiochemistry Procedures Manual," EPA-520/5-84-006.

Table C-5
SAMPLE COMPARISON (REQUIRED-VS-ACTUAL)

Parameter	Required Number of Samples per Sampling-Plan Specifications	Actual Number of Samples	Deviation
Semivolatiles	20	20	0
Pesticides and PCBs	20	20	0
Metals (inorganics)	20	20	0
²²⁶ Ra, ²²⁸ Ra, ^{233/234} U, ²³⁵ U	20	20	0
Fallout Radionuclides	20	20	0
Chemical Parameters/Physical Properties	20	20	0

APPENDIX D BOX-AND-WHISKER PLOTS

Appendix D contains box-and-whisker plots comparing analyte concentrations. Plots for BSCP data, Rock Creek (RC) data, and the combined BSCP and Rock Creek data set (ALL_BG) are presented for comparison for analytes that had non-detect rates less than 80% in the BSCP data set and in the Rock Creek data set. Analytes such as antimony, cesium, mercury, molybdenum, silver, thallium, and tin had non-detect rates greater than 80% in either the BSCP or Rock Creek data sets; plots of these analytes are not included in this appendix. The non-detect rates are noted at the bottom of each box-and-whisker plot.

ALUMINUM

ARSENIC

BARIUM

CALCIUM

CHROMIUM

COBALT

COPPER

RON

MITHITI

MAGNESIUM

MANGANESE

NICKEL

POTASSIUM

SELENIUM

SILICON

SODIUM

STRONTIUM

VANADIUM

AMERICIUM-241

CESIUM-134

CESIUM-137

PLUTONIUM-239+240

STRONTIUM-89+90

RADIUM-226

RADIUM-228

URANIUM-233+234

URANIUM-235

URANIUM-238

AMMONIA

NITRATE/NITRITE

OIL AND GREASE

Non-detects: BSCP = 0%, RC = 0%, All_BG = 0%

SPECIFIC CONDUCTIVITY

TOTAL ORGANIC CARBON

EXECUTIVE SUMMARY

The Background Soils Characterization Program (BSCP) study followed the Data Quality Objective (DQO) guidelines established by the U.S. Environmental Protection Agency (EPA). A work plan was prepared and approved by the U.S. Department of Energy (DOE), the EPA, and the Colorado Department of Public Health and Environment (CDPHE).

An exploratory data analysis (EDA) performed during the development of the *Background Soils Characterization Plan* (DOE, 1994) indicated that two sampling efforts were appropriate to characterize background surface soils and augment the existing background data set (i.e., Rock Creek) for the chemicals in the vicinity of the Rocky Flats Environmental Technology Site (RFETS). Those sampling efforts were completed as follows:

- Group 1 (Metals, Naturally Occurring Radionuclides, and Organic Compounds):
 Twenty samples were collected just north of RFETS from soils that are similar in topography, parent material, and historic use to soils on RFETS. These samples were analyzed for naturally occurring radionuclides (uranium and radium isotopes), metals and selected inorganic constituents, semivolatile organic compounds (SVOCs), pesticides, and polychlorinated biphenyls (PCBs).
- Group 2 (Fallout Radionuclides):
 Fifty samples were collected from remote (offsite) locations along the Colorado Front
 Range for measuring activities of fallout radionuclides (americium-241, cesium-134,
 cesium-137, strontium-89+90, and plutonium-239+240) in surface soils.

Summary statistics for metals and certain other inorganic constituents, fallout radionuclides, SVOCs, pesticides, herbicides, PCBs, and selected physical parameters for background surface soils sampled and analyzed in the BSCP study are presented in Tables E-1 through E-3. Summary statistics for the Rock Creek study are presented in Tables E-4 through E-6. Discussion of these results and a comparison of the BSCP data set with the Rock Creek data set (which has been used as the background data set to date), are presented in Section 4.0 of this report. Data from the BSCP and Rock Creek studies were also compared with data from existing regional background studies.

Despite minor differences between the Rock Creek and BSCP data for naturally occurring (i.e., Group 1) analytes, both the Rock Creek and BSCP data sets appear to be subsets of the "true" background population. The BSCP results for Group 1 analytes verify the validity of the Rock Creek data as representative of background conditions for these analytes in surficial soils.

Although the mean and maximum activities for plutonium in Rock Creek samples are slightly higher than those for the BSCP samples, the Rock Creek data are within the

range of a recently completed background study by Colorado State University. When the error terms for the analyses are considered (see Appendix B for data printout), there is little real difference in the values.

Either the Rock Creek or BSCP data may be used for future comparison studies. The BSCP data set may be preferred because of the well-documented work plan, which followed EPA's DQO process, and the exploratory data analysis, which determined the sample size necessary for the chemical characterization of surficial soils.

An additional objective not included in the work-plan development, but considered helpful for present and future remediation projects determined the mass-isotope ratio of plutonium-239/plutonium-240 for 12 remote (i.e., Group 2) samples. These results are included as Appendix A of this report. The average plutonium-240/plutonium-239 ratio for the 12 samples was 0.155 + 1.0.019; the average plutonium-241/plutonium-239 ratio was determined to be 0.0030 + 1.0.0004. These mass-isotope ratios for regional fallout for plutonium can be used in future studies at RFETS, as well as in other regional studies of fallout radionuclides.

Because the plutonium-240/plutonium-239 ratio for fallout (0.155) is significantly different than the that for plutonium processed at RFETS (240/239 ratio = 0.065), determination of the plutonium-240/plutonium-239 atom ratios in soil samples could be used to separate the plutonium into its global fallout component and its RFETS component.

BONTDE

Figure 1-4a

Figure 1-4b

